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Abstract
A significant challenge on an exascale computer is the speed at which we compute results exceeds by many orders
of magnitude the speed at which we save these results. Therefore the Exascale Computing Project (ECP) ALPINE
project focuses on providing exascale-ready visualization solutions including in situ processing. In situ visualization and
analysis runs as the simulation is run, on simulations results are they are generated avoiding the need to save entire
simulations to storage for later analysis. The ALPINE project made post hoc visualization tools, ParaView and VisIt,
exascale ready and developed in situ algorithms and infrastructures. The suite of ALPINE algorithms developed under
ECP includes novel approaches to enable automated data analysis and visualization to focus on the most important
aspects of the simulation. Many of the algorithms also provide data reduction benefits to meet the I/O challenges at
exascale. ALPINE developed a new lightweight in situ infrastructure, Ascent.

Introduction

Prior to the exascale era, typical visualization tasks and
analysis used post hoc visualization workflows leveraging
a visualization application such as ParaView Ahrens et al.
(2005) or VisIt Childs et al. (2012). Post hoc workflows
visualize simulation output data that was previously saved
during simulation execution. Having reached the exascale
regime, scientific simulations can now produce terabytes
of data in every time step. Recent advances in I/O and
storage capabilities have not kept up with the increases in
compute power. Given these challenges, in situ approaches
are a viable and necessary solution to meeting the needs of
high performance computing applications. In situ approaches
are run during a simulation, possibly at each time step,
processing simulation outputs as they are generated. In
situ analysis and visualization approaches can be used to
downselect and reduce data, identify features of interest,
produce visualizations, and generate smaller extracts that can
be used in post hoc workflows. In situ infrastructures provide
the necessary application and systems interfaces to support in
situ workflows.

The contributions of the Exascale Computing Project’s
(ECP) ALPINE project were:

1. Made post hoc visualization tools exascale ready

2. Developed Exascale visualization and analysis algo-
rithms that will be critical for ECP Applications.

3. Developed an Exascale-capable infrastructure for the
development of in situ algorithms and deployment into
existing applications, libraries, and tools.

4. Integrated other ECP Software Technology data and
visualization, and programming model products into
our infrastructure.

5. Integrated our algorithms and infrastructure into ECP
Applications.

1Los Alamos National Laboratory, 2Argonne National Laboratory,
3Lawrence Berkeley National Laboratory, 4Lawrence Livermore National
Laboratory, 5Oak Ridge National Laboratory, 6Sandia National Labora-
tories, 7University of Oregon, 8University of Utah, 9University of Leeds,
10Kitware, Inc., 11Luminary Cloud, 12Intel, 13Indian Institute of Tech-
nology Kanpur, 14e.solutions GmbH, 15SRI International, 16Utah State
University 17NVIDIA, 18Clemson University, 19King Abdullah University
of Science and Technology

Corresponding author:
Terece L. Turton, Los Alamos National Laboratory LANL MS-B256, PO
Box 1663, Los Alamos, NM 87545-0001
Email: tlturton@lanl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

This paper is structured to describe these contributions
with sections on: in situ infrastructure, in situ algorithms,
software integrations and application integrations.

ALPINE Infrastructure
A key challenge of ECP was achieving high performance,
portable, thread-based parallelism on graphical processing
units (GPUs). The Visualization Toolkit (VTK) is a
open source visualization library that offers full-featured
collection of visualization and analysis filters. VTK
algorithms are used by ParaView and VisIt. A distributed
memory version of VTK was previously developed to
run scalably on supercomputers offering across-node
parallelism. The VTK-m Moreland et al. (2016) project, a
companion ECP project, developed portable multi-threaded
implementations of key VTK visualization and analysis
algorithms for on-node parallelism. ALPINE infrastructure
has developed a layer on top of the VTK-m library for cross-
platform portability and performance. This layer is where all
ALPINE algorithms are implemented, and it is deployed in
ParaView, Catalyst, VisIt, and Ascent. Thus all development
effort by ALPINE is available in all of the tools and, by
leveraging VTK-m, addresses issues with portability and
many-core architectures. (Note: post-ECP, VTK-m is now
available as Viskores Moreland et al. (2024).)

ParaView
ParaView 5.11.1, the open source platform for scientific
visualization, was deployed on the Frontier supercomputer
at the Oak Ridge Leadership Computing Facility (OLCF),
enabling analysis and rendering workflows which take
advantage of the exascale computing capabilities of the
facility.

To enable ParaView to utilize GPUs on the exascale
machines, a new set of “accelerated filters” were imple-
mented. These filters serve as wrappers over VTK-m’s filters.
These accelerated filters readily use exascale hardware and
have been demonstrated to be performant. The accelerated
filters are available in ParaView as plugins which can be
loaded on demand, and in case of failures, a fallback has
been provided to use the traditional (VTK) filters. Addition-
ally, these filters also handle all the necessary conversions
between the ParaView and VTK-m data models without
unnecessary data movement (zero-copy). Deployment was
enabled by new developments in Spack under the ECP DAV-
SDK (software develoment kit) project.

Analysis and visualization workflows were validated on
massive datasets, such as that shown in Figure 1, as well
as synthetic structured grid datasets composed of over 4.4
trillion elements, taking up over 16.4TB per timestep on disk.
ParaView was able to take advantage of the considerable
GPU resources on Frontier for accelerated analysis filters
employing VTK-m.

VisIt
VisIt is an interactive, scalable, distributed visualization and
analysis tool. VisIt uses the Visualization Toolkit (VTK) to
provide much of its visualization and analysis capabilities.
This functionality is encapsulated in a filter architecture.

Figure 1. A single timestep from a simulation of a pulsar
conducted in WarpX is rendered in ParaView running remotely
on Frontier at OLCF. This dataset is composed of a 5.75B
element AMR mesh totaling 1.16TB of data. This visualization
takes advantage of GPU accelerated VTK-m analysis filters
employing 128 nodes and a total of 512 GPUs. This data is
courtesy of Revathi Jambunathan at Lawrence Berkeley
National Lab.

VisIt uses distributed memory parallelism using MPI to scale
its functionality to the largest DOE leadership class systems.
The main thrust of the VisIt effort in ECP ALPINE was
to leverage on node parallelism using VTK-m, culminating
in the release of VisIt 3.3.3 on Frontier. The user can now
specify, either through the Python scripting interface or the
graphical user interface, whether to use the traditional VTK
filters or to use VTK-m filters when possible.

VisIt’s internal filters were enhanced to support using
either VTK or VTK-m. When VTK-m is enabled and a filter
supports VTK-m then it converts the dataset to VTK-m if
necessary and then uses the VTK-m filter. The conversion
is done using zero-copy constructs wherever possible to
minimize data duplication. Several of the most heavily used
filters were converted to use either VTK or VTK-m including
Contour, Slice, Clip, Isovolume and Threshold.

VisIt’s Spack package was enhanced to support building
VTK-m with the Kokkos backend using HIP. Additionally,
several other optional VisIt dependencies were added to
VisIt’s Spack package including Conduit Harrison et al.
(2022) and MFEM Anderson et al. (2021).

To demonstrate running at scale using the AMD APUs on
Frontier, VisIt was used to generate an image, Figure 3, from
a 2048 domain WarpX calculation with 70 billion zones.
VisIt was run on 512 nodes using 2048 APUs.

Ascent
Developed under the ALPINE project, Ascent is a flyweight
in situ visualization and analysis library for multi-physics
simulations targeting current and next-generation HPC
architectures. It was designed and built from the start to
leverage GPUs for on-node parallelism. Ascent productized
and expanded the flyweight software architecture prototype
of the Strawman Larsen et al. (2015) Larsen et al. (2017) in
situ visualization proxy.

Ascent aims to be easy to use, providing three main use
cases: making pictures, transforming data, and capturing
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Figure 2. Selecting the VTK-m backend in VisIt.

Figure 3. Visualization from the 70 billion cell WarpX Gordon
Bell-winning simulation Fedeli et al. (2022) visualized with 2048
GCDs on Frontier using VisIt.

data. To pass data to Ascent, Ascent leverages Conduit
Blueprint to intuitively describe simulation mesh data.
Ascent was the first production infrastructure to demonstrate
Conduit Blueprint as a viable strategy for sharing simulation
mesh data in situ. The Ascent team worked closely with ECP
Co-Design Centers to create easy paths to publish simulation
mesh data to Ascent from codes using AMReX Zhang et al.
(2019) or MFEM.

Ascent supports the most common visualization and
analysis operations, provides infrastructure to integrate
custom analysis, and creates several types of extracts
including HDF5 The HDF Group files and Cinema
databases Ahrens et al. (2015). Ascent uses Conduit to
provide C, C++, Python, YAML, and Fortran APIs to
describe which visualization actions to execute. Ascent
requires minimal dependencies resulting in lower memory
requirements than other current tools, resulting in a flyweight
design with a small memory footprint, while leveraging
libraries that provide parallel performance.

To achieve performance and portability, Ascent leverages
the VTK-m library and RAJA Beckingsale et al. (2019) for
on-node parallelism, and MPI (Message Passing Interface)
for distributed-memory coordination. VTK-m provides a
suite of visualization and analysis algorithms, as well as
zero-copy capabilities and the ability to pass device-pointers,
allowing for efficient exploitation of shared resources.
Ascent was also a platform for research into in situ triggers
Larsen et al. (2018) Larsen et al. (2021) Lawson et al.
(2021), which provide flexibility to adapt visualization
actions and help address a priori constraints that can limit
batch use of in situ tools.

Catalyst
Under ECP ALPINE, the Catalyst Ayachit et al. (2021)
in situ analysis and visualization platform was expanded
and matured to meet the requirements of advanced exascale
simulation workflows.

The standalone Catalyst 2.0 API leverages Conduit
Blueprint to describe simulation data and manage its
transmission to runtime selectable backends which execute
analysis and visualization workflows. By using the
same library as Ascent to manage data description and
transmission, simulation applications can use both in situ
libraries with little changes to their codebase, significantly
increasing the surface area for both Catalyst and Ascent
across the exascale simulation workflow ecosystem. This
benefit was showcased by the rapid integration of a
Catalyst in situ analysis adapter to MFiX-Exa, a massively
parallel computational fluid dynamics–discrete element
model (CFD-DEM) code, to study multiphase flows Musser
et al. (2022). Results of that integration are shown in the
ALPINE Integrations Highlights section later in this article.

Further increasing the usability and applicability of
Catalyst, language support for Python and Fortran were
added to the Catalyst 2.0 API under ECP ALPINE. This
effort provided bindings so that the Catalyst 2.0 API can
be called from Python and Fortran based simulation codes
directly. This development leveraged the existing Conduit
bindings for the two languages.

One of the key advantages of Catalyst is runtime selectable
backends. Here, a user can decide at simulation startup
whether to use, for instance, the ParaView Catalyst backend
for full featured leadership class analysis and visualization
workflows, or the ADIOS Catalyst backend, targeting in-
transit workflows for asynchronous analysis activities, or
the new Ascent backend developed under ECP ALPINE,
for direct access to GPU accelerated Ascent tools. Because
Catalyst 2.0 utilizes Conduit in similar ways to Ascent, it
was natural to expose Ascent as a backend for Catalyst,
allowing existing Catalyst users to easily employ Ascent in
situ workflows.

Task-based Composable Workflows
In the realm of in situ processing, where analysis routines
seamlessly integrate with simulation code stacks, a notable
distinction arises. Unlike simulation code, analysis and
visualization routines are generally applicable across a
broad spectrum of applications. However, complications
emerge when different simulation codes operate on varied
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architectures or runtimes, leading to the constant need
to tailor analysis code to specific hardware. A multi-
runtime abstraction layer called BabelFlow Petruzza et al.
(2018) was introduced to address these challenges, offering
developers a straightforward dataflow-based interface for
the implementation of parallel algorithms. By utilizing task
graphs, BabelFlow explicitly delineates parallel execution
sections of the algorithm and their interrelations.

This framework has been integrated into Ascent to allow
the implementation of task based analysis and visualization
algorithms and has been extended to support the composition
of dataflow graphs into more complex workflows. This
extension, called LegoFlow Shudler et al. (2021), currently
provides task based in situ workflows for: (i) a distributed
rendering and image compositing using Devil Ray DevilRay
and VTK-h VTK-h (described in Shudler et al. (2021)); and
(ii) a merge tree based segmentation and feature statistics
computation. The merge tree based analysis segments the
domain into features according to threshold values (i.e., level
sets). This kind of segmentation has been proven to be
useful in a number of scenarios, such as extracting extinction
regions in turbulent combustion simulations, or identifying
and tracking eddies in the oceans. We have extended the
merge tree computation workflow Petruzza et al. (2018) to
compute statistics of the features extracted using a streaming
statistics library Shudler and Bremer (2022).

ALPINE Algorithms

The development of innovative algorithms to support the
needs of exascale applications was an important facet of
ALPINE’s contributions to ECP. Algorithm development
generally began with a basic Python or C++ prototype.
ECP science application partners shared early datasets of
interest which were used for prototype testing and to
gauge the impact of algorithm for potential use. In order
for algorithms to be accessed in both post hoc and in
situ infrastructures, final algorithm productization required
converting the algorithm to a VTK-m filter with associated
unit testing.

• Topological analysis: These methods are used to detect
features in the data and adaptively steer visualizations.
For example, contour trees can identify the most
significant isosurfaces in complex simulations and
then the resulting visualizations can use these
isosurfaces.

• Adaptive sampling: These methods can be used to
guide visualizations and extracts to the most important
parts of the simulation, significantly reducing I/O.

• Statistical feature detection: These methods use
distribution-based approaches and statistical similarity
measures to identify and isolate features of interest.
Significant data reduction is possible by only saving
the statistical representations of the data.

• Lagrangian flow analysis: This method is used
to analyze fluid flow, allowing more efficient and
complete tracking of particles over time. It can save
time-varying vector field data with higher accuracy
and less storage than the traditional approaches

• Optimal viewpoint selection: These metrics can be
used to automate visualization decisions in situ,
minimizing visualizations written to disk.

• Rotational invariant pattern detection algorithm.

Topological analysis
Visualization increasingly requires analytic tools for data
beyond human comprehension: tools such as the contour
tree, Reeb graph and merge tree which summarize the
development of features in the data set as the isovalue varies
are therefore of prime interest. However, the application of
these tools has been limited by the scalability of often serial
algorithms, in particular the standard serial algorithm Carr
et al. (2003) for merge and contour trees.

Our goal in ECP ALPINE was to use the contour
tree for selection of isosurfaces on exascale machines, see
Figure 4. This required algorithms using both on-node
(shared memory) parallelism and multi-node (distributed)
parallelism. We achieved this through a hybrid algorithm,
using data parallel primitives, VTK-m and DIY Morozov and
Peterka (2016) for portability.

To do so, we introduced (data-) parallel peak pruning
(PPP) Carr et al. (2021), exploiting parallel-friendly proper-
ties of monotone paths instead of the serializing properties
of contours previously used Carr et al. (2003). However,
computing the contour tree alone is insufficient, as it captures
only critical points where topology changes, where analysis
requires further information about “regular“ points where
topology is invariant. We therefore extended this algorithm
to compute the fully-augmented contour tree Carr et al.
(2022a), based on data-parallel hyperstructures for acceler-
ation. With these, we were able to implement data-parallel
data analysis using the contour tree and tie it into the Cinema
database for single-node visualization Hristov et al. (2020).

Based on an efficient single-node contour tree algorithm,
we then developed a distributed, hierarchical representation
of the contour tree Carr et al. (2022b), based on the
hyperstructure used in shared-memory. This in turn allowed
us to extend analysis and visualization tools to hybrid
distributed parallelism, supporting geometric computations,
branch decomposition and selection of the most relevant
contours. Finally, we coupled our contour-tree based analysis
using Ascent to the WarpX simulation code and ran tests, see
Figure 5.

Both, the single node contour tree algorithm as well as the
distributed version are available to anyone through VTK-m.

Adaptive Sampling
Sampling is an in situ data reduction approach for scalar
datasets generated by large-scale scientific simulations.
Under ECP, ALPINE developed several data-driven sam-
pling methods. The most generic sampling method essen-
tially analyzes the scalar data distribution and local smooth-
ness property of data to automatically assign importance to
the scalar values. Points in the field are accepted (i.e, kept
for post hoc analysis) or rejected (i.e., removed during in situ
processing) based on their importance. Typically, important
features are the rarer events. Thus the automated sampling
approach assigns higher importance to the low probability
scalars and lower importance to the higher frequency scalars.
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Figure 4. Comparing contours for equally spaced isovalues to contours selected using topological analysis via the contour tree for
a Warp simulation. This early illustrative was example created via post hoc analysis of a Warp simulation.

Figure 5. Small scale run of contour selection using topological
data analysis via the contour tree. This image was created
using a WarpX simulation instrumented with Ascent. This is a
32 node run on Frontier using 256 MPI ranks.

The other aspect of importance is based on local
smoothness or local gradient information. High gradient
regions often are of high importance to the domain experts
as they can indicate feature boundaries or regions of high
turbulence or mixing. The high gradient sampling scheme
exploits local smoothness to assign higher importance to
high gradient regions alongside the previously mentioned
value-based importance. An example of this sampling
scheme is shown in Figure 6. Figure 6a shows the volume
rendering of density field from Nyx simulation and Figure 6b
shows the particles remaining after applying the data-driven
sampling scheme. As can be seen in those two figures, the
sampled particles follow the structures of the density field
quite closely.

The sampling algorithm is available through Ascent
as a VTK-m filter. Two versions of this algorithm are
available: a histogram-based sampling using importance
and a histogram+gradient-based sampling. The histogram-
based version emphasizes the scalar value distribution alone,
whereas the histogram+gradient-based version considers

Figure 6. Left: the density field from Nyx simulation; right: the
sampled particles data from the density field.

the joint distribution of both the scalar values as well
as the gradient magnitude values. Including the scalar
value distribution helps preserve the low-frequency regions
of the data, while gradient magnitudes emphasize the
smoothness of the data in those regions. Therefore,
the histogram+gradient-based version is generally better
at retaining important features of the data than just
the histogram-based version of sampling algorithm. The
interested reader is directed to Biswas et al., Biswas et al.
(2022, 2021) for further information.

Lagrangian Flow Analysis

Lagrangian analysis is an in situ data reduction operator
used for time-dependent vector field data generated by a
simulation code. With the objective of storing/representing
fluid dynamics data in its Lagrangian representation, the
Lagrangian analysis functionality is implemented as a
VTK-m filter. The filter operates by placing seeds and
calculating the corresponding particle trajectories in the flow
volume. These particle trajectories encode the underlying
behavior of the flow field. Calculating and extracting a
Lagrangian representation of a flow field offers significantly
improved accuracy-storage propositions for time-dependent
flow visualization compared to the traditional (Eulerian)
method. Thus, the Lagrangian analysis filter enables data
reduction of large vector fields while maintaining high
data integrity. Computing a Lagrangian representation
using in situ processing and storing a reduced flow map
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representation of the vector field can potentially address the
shortcomings of the traditional approach.

The VTK-m Lagrangian flow analysis filter produces flow
maps when provided with time-varying vector field data
and manages particles on a per rank basis. The flow maps
themselves consist of the start locations and displacement
of each particle over several simulation iterations, thus
capturing the behavior of the particle over an interval of
time. To maintain domain coverage, particles are reset
to their initial start position after each interval. The
flow maps can be interpolated directly to generate new
particle trajectories accurately. The efficacy of the approach
has been demonstrated on multiple computational fluid
dynamics applications including cosmology, seismology,
and hydrodynamics. The interested reader is invited to
peruse Sane et al. (2018), Sane et al. (2021a), Sane et al.
(2021b), Sane and Childs (2022), Sane et al. (2022) for
example use cases.

Optimal Viewpoint Selection
Optimal viewpoint selection is an in situ algorithm for
automating camera placement for in situ visualization of
multi-physics HPC simulations. The algorithm operates on
mesh data and uses Viewpoint Quality (VQ) metrics to
evaluate how much insight a camera position provides.
Typically, VQ metrics analyze some visible aspect of the
visible data, such as the geometry or field data. In order
to determine which VQ metrics best represent choices a
domain scientist would make, a user study (complying with
institutional requirements for human subject research) with
large data analysis and visualization experts was performed
and resulted in a new, entropy-based VQ metric that
best predicts user preference Marsaglia et al. (2021). The
entropy-based VQ metric is a combination of three entropy
calculations: entropy of the visible field data, entropy of the
visible depths (measured from the camera to the geometry),
and the entropy of the visible shading values.

Optimal viewpoint selection was implemented as a filter
in the Ascent in situ visualization and analysis framework.
The VQ metrics were written using VTK-m to guarantee
shared-memory performance and portability, as well as MPI
for efficient distributed-memory parallelism Marsaglia et al.
(2022b). Optimal viewpoint selection can be useful for
exploratory purposes when there is no a priori knowledge
of the simulation, it can also be used as a trigger when the
simulation has changed Marsaglia et al. (2022a). However,
more importantly, the optimal viewpoint selection minimizes
the amount of data written to disk, reducing a large-scale
simulation time step to a single, insightful image.

Statistical Feature Detection
The Statistical feature detection algorithm processes three-
dimensional (3D) particle fields in situ and transforms the
data into a feature similarity field, which is stored to disk
for further post hoc analysis. The current version of the
algorithm works on a particle field; however, the algorithm
can be easily applied to any regular-grid scalar data with
minor modifications. Starting with analyzing data in situ
and detecting features of interest to the user, the algorithm
then outputs a statistically summarized data set that is

significantly smaller in size compared to the raw particle
data. The summarized data can be analyzed interactively in
post hoc analysis for further feature analysis. This algorithm
follows the feature-driven data reduction paradigm to
achieve significant data reduction while preserving important
information so that post hoc analysis can be done on the
reduced data.

The algorithm works on an unstructured particle field
and a feature is represented as a statistical probability
distribution. Representing the feature in the form of a
distribution allows the application scientists to specify a
descriptor of the features of interest without needing to
precisely define it. In many application domains, a precise
description of a feature is not readily available due to the
complexity of the scientific data. A statistical technique is
a flexible solution for feature detection. An interactive user
interface can be used where the users can move a cube object
freely inside the data and put it in a region where they
are interested. Next, a distribution representation (currently
Gaussian distribution is used, but any other distribution
model can be used) is created from the data points within
that selected cube region and is used as the target feature
descriptor.

The ECP use case was the MFIX-Exa CFD-DEM code.
The feature of interest is an area of low density or a bubble.
For this particle-based code, the algorithm takes a particle
field as input and first transforms it into a regular grid particle
density field. The density field is passed through a 3D super
voxel generating algorithm, called Simple Linear Iterative
Clustering (SLIC) that produces super voxels from the
particle density field. A Gaussian distribution is modeled for
each super voxel. Finally, a distribution similarity measure
is used to compute a statistical similarity field between
each super voxel distribution and the user-provided target
feature distribution. These steps can be seen in Figure 7. The
interested reader is directed to Dutta et al. Dutta et al. (2022a)
and Dutta et al., Dutta et al. (2022b) for details.

Rotational Invariant Pattern Detection
Pattern detection can be used to identify features in a
simulation in situ to reduce the amount of data that needs
to be written to disk. For simulations where physically
meaningful patterns are already known, the orientation of the
pattern may not be known a priori. Pattern detection can be
unnecessarily slowed if the pattern detection algorithm must
search for all possible rotated copies of a pattern template.
Therefore, rotation invariance is a critical requirement.
Moment invariants can achieve rotation invariance without
the need for point to point correlations, which are difficult to
generate in smooth fields Bujack and Hagen (2017); Bujack
et al. (2022).

The rotational invariance feature detection algorithm can
take either scalar or vector fields and requires a pattern
template as input. An example using the same MFIX-Exa
dataset defined the search pattern to be a density boundary
between a high density and low density field. The first
step of the VTK-based filter computes the moments while
the second step performs a normalization based on the
given pattern that makes them invariants. Then, the third
step computes the similarity between each part of the
simulation and the template. Figure 8 shows the original
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Figure 7. The steps of the in situ statistical feature detection algorithm from the raw data to the similarity field.

pattern template and data along with the bubbles identified
with this algorithm. The interested reader can find more
details in Tsai et al., Bujack et al. (2018); Tsai et al. (2020).

Figure 8. Left: the density boundary as the search pattern;
middle: the original particle dataset; right: the identified bubbles
in the data.

ALPINE Software Technology Integration
Highlights
ECP’s data and visualization (DAV) portfolio is a software
stack of products designed to support data management,
data analysis, and visualization needs at exascale. With the
emphasis on interoperability, ALPINE infrastructures can
be used to link client applications to capabilities across the
DAV portfolio and other ECP capabilities. In particular,
ALPINE relies on VTK-m for cross-platform portability
and visualization filters. By integrating ECP co-design
codes such as AMReX Zhang et al. (2019) into ALPINE
infrastructures, AMReX-based applications can easily access
ALPINE capabilities. All ALPINE infrastructures support
HDF5 for I/O and, through HDF5 The HDF Group, access
to the zfp Lindstrom (2014) and SZ Di and Cappello (2016)
compressors. Cinema databases Ahrens et al. (2015) can
be exported in situ from ALPINE infrastructures to support
post hoc visualization and analysis workflows. Ascent, in
addition to VTK-m Moreland et al. (2016) for portability,
includes a RAJA Beckingsale et al. (2019) backend. The
MFEM Anderson et al. (2021) high-order finite element
library has also been integrated into Ascent. Through the
DAV Software Development Kit DAV SDK, all ALPINE
capabilities are available in the Extreme-scale Scientific
Software Stack (E4S) Heroux et al. (2023) for post-ECP
sustainability.

ALPINE Application Integration Highlights
The success of our project is demonstrated by the integration
of our in situ algorithms and infrastructure into ECP
applications. In this section, we highlight our integration
with the Combustion-Pele, WarpX, and MFIX-Exa projects.

Integration of Combustion-Pele with Ascent and
ExaLearn
An anomaly can be loosely defined as an occurrence of
something that is “abnormal”, “atypical” or “unexpected”.
Here, we have implemented a methodology that is centered
on analyzing high-order joint moments in multi-variate
combustion datasets, and then applied it to the problem
of identifying the onset of autoignition in a combustible
mixture in situ. The methodology is based on the co-
kurtosis algorithm by Aditya et al. (Aditya et al. 2019)
for calculation and analysis of fourth-order joint moments.
Kurtosis is a measure of either existing outliers (for the
sample kurtosis) or of the propensity to produce outliers
(for the kurtosis of a probability distribution; Westfall
(2014)). The integration between the co-kurtosis calculation,
implemented via ExaLearn Alexander et al. (2021) into
the exascale code for reacting flows Pele Henry de
Frahan et al. (2024) was powered by ALPINE Ascent,
the flyweight visualization and analysis infrastructure for
multi-physics HPC simulations. Thanks to the combination
of the adaptive mesh refinement granularity in Pele with
the statistical outlier detection capability of co-kurtosis, the
method demonstrated a considerable speed-up compared to
traditional post-processing techniques when tested for the
identification of ignition kernels from the injection of a
Diesel-like fuel in air (Borghesi et al. 2018). Using all
AMR levels and all chemical species, the entire process of
identification was shown to take only 2% per solver time
step in its target run (2.4 Trillion degrees of freedom) on
56,800 GPUs, thus demonstrating its in situ effectiveness.
The metrics generated at runtime for AMR levels 3 to 6 are
shown in Figure 9, where each AMR block (each small cube
shown) is comprised of between 163 and 643 cells.

WarpX Visualization Pipeline
WarpX is an award winning particle-in-cell simulation code
that studies advanced particle acceleration in laser-driven
plasma wakefields Fedeli et al. (2022) in order to advance
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Figure 9. Simulation of direct injection of four jets of
prevaporized n-dodecane fuel-air mixture into a methane-air
mixture in an internal combustion engine cylinder. The domain
is discretized using 60.2 Billion cells, with a total of 2.4 Trillion
degrees of freedom. (a) Co-kurtosis metric M for AMR blocks in
sixth level of refinement, colored by value (from blue to red); (b)
Detailed view of AMR blocks in the highest level of refinement
(level 6) colored by anomaly metric M (from blue to red).
Zoomed-in view (green circle) shows the AMR blocks in more
detail; (c) Same detailed view as in panel b, but only for blocks
with anomaly metric M > 0.65. Note: Figures were produced a
posteriori using Python and Paraview.

the future of high-energy physics colliders Albert et al.
(2021). WarpX is built on top of the AMReX library and
is an example of the value of integrating the co-design
AMReX suite into ALPINE infrastructures. In this case,
the integration of Ascent and AMReX created an easy
path to publish WarpX simulation mesh data to Ascent.
WarpX was integrated with Ascent and tested on OLCF’s
supercomputer, Frontier, at varying scales. Figures 10 and 11
are in situ renderings from Ascent of a staged laser-wakefield
accelerator in a boosted reference frame. In these images
an electron beam (orange-green) is accelerated to the right
through multiple stages to high energies. And in the plasma
stages (gray), the strong traversal focusing fields are shown

in red-blue. To create these images, Ascent utilized VTK-
m Moreland et al. (2016) to first transform the data via
scaling, isosurfacing, and clipping, before rendering the final
images. Ascent also utilized RAJA Beckingsale et al. (2019)
to combine multiple electron fields into one to allow for
volume rendering.

Figure 10. Visualization of a staged laser-plasma accelerator
simulation. Shown is the strong traversal focusing fields
(red-blue) in the first plasma stage (gray) and injected into this
structure is an electron beam (orange-green) that is accelerated
to the right to high energies. This in situ rendering of a later time
step of the WarpX simulation executed on 552 GPUs across 69
nodes of Frontier.

Figure 11. This in situ rendering of an early time step of the
WarpX simulation was executed on 4,416 GPUs across 552
nodes of Frontier.

MFIX-Exa In situ Visualization with Catalyst
MFIX-Exa is a multiphase flow code developed to utilize
the massive scale parallelism offered by the modern
supercomputers while being performant and portable Musser
et al. (2022). It relies on the AMReX Zhang et al. (2019)
library, which provides a collection of efficient iterators,
linear solvers, and communication routines on structured
data and particles. To address the data management
challenges posed by massive parallelism, MFIX-Exa added
support for in situ visualization and analysis using Catalyst.
This integration benefited both the products mutually as
Catalyst and its ParaView backend unlocked access to an
almost exhaustive suite of visual analytics for MFIX, and
to support the needs of MFIX-Exa, Catalyst had to develop
new protocols to handle AMReX data. This integration was
tested on varying scales, and Catalyst was able to run on
up to 649 nodes while using 5187 GPUs on Frontier. Figure
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12 showcases the type of output images generated using this
integration.

Figure 12. The MFIX-Exa team ran several intermediate-sized
simulations using the Catalyst integration to generate in situ
graphics. The above visualizations were demonstrated utilizing
30 nodes and 239 GPUs. This figure shows (left) rendering of
the mesh outline of the reactor and (right) rendering of particles
of the fluid phase volume fraction within the chemical looping
reactor during the initial condition. Darker colors represent
areas higher in solids concentration, whereas brighter colors
are areas with few particles.

Conclusions
Exascale supercomputing architectures challenged the
traditional post hoc visualization and analysis approaches
because it is difficult to save simulation outputs at the
rate they are generated. In addition, GPU accelerators
required new algorithm and infrastructure implementations.
The ALPINE project met these challenges by offering in situ
algorithms and infrastructures. ALPINE infrastructures and
algorithms are available to the community and can be found
at the following sites:

• ParaView: https://www.paraview.org/
• ParaView GitLab: https://gitlab.kitware.
com/paraview/paraview

• Catalyst Documentation: https://
catalyst-in-situ.readthedocs.io/
en/latest/

• VisIt: https://visit-dav.github.io/
visit-website/

• Ascent GitHub: https://github.com/
Alpine-DAV/ascent

• Ascent Documentation: https://ascent.
readthedocs.io/en/latest/

• Algorithms: https://github.com/
Alpine-DAV/algorithms/tree/master
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