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Abstract—Deepfake technology has advanced significantly, pro-
ducing highly sophisticated fake images that challenge detection
mechanisms. However, existing deepfake generators struggle to
maintain realism in side-face perspectives, particularly under
diverse indoor and outdoor lighting conditions. This limitation
is further pronounced for individuals of Indian ethnicity, where
variations in skin tone, hairstyles, facial hair, and image capture
distance from the camera introduce additional challenges. In this
paper, we critically examine the performance of state-of-the-art
deepfake generators in these scenarios, highlighting key vulner-
abilities in side-face synthesis. We also assess the effectiveness of
current detection frameworks in identifying these inconsistencies.
Furthermore, we discuss the broader implications of generative
models in security-sensitive applications and propose future re-
search directions to enhance the robustness of deepfake synthesis
and detection. Our recommendations include improving dataset
diversity, developing adaptive generative models, and leveraging
multimodal approaches to strengthen detection mechanisms,
ensuring more secure and reliable Al-driven media applications.

Index Terms—Deepfake, Generative models, Discriminators,
Side-face

I. INTRODUCTION

Deepfake (DF) technology, powered by generative deep
neural networks, has revolutionized digital media by enabling
the creation of highly realistic synthetic images and videos.
These advancements have unlocked innovative applications in
entertainment, education, and accessibility, offering new ways
to engage audiences and enhance experiences [1]. However,
this technology poses significant risks, including misinfor-
mation, identity fraud, and security threats. As DF genera-
tion techniques continue to evolve, the ability to distinguish
between real and synthetic content has become increasingly
challenging, prompting extensive research into DF detection
methods. Despite these efforts, a critical gap remains in the
analysis of DF vulnerabilities in side-face perspectives, par-
ticularly under diverse real-world conditions such as varying
lighting, camera angles, and ethnic diversity [2].

Most existing DF research and datasets focus predominantly
on frontal-face perspectives, where facial features are fully vis-
ible, and detection models can leverage symmetrical patterns
and high-resolution details. In contrast, side-face DFs present

unique challenges due to partial facial visibility, occlusions,
and variations in illumination [3]. These factors make side-
face synthesis an underexplored yet highly relevant problem,
especially in security-sensitive domains [4]. Our analysis re-
veals that current DF generators struggle to produce realistic
side-face images, often resulting in artifacts such as boundary
distortions, texture inconsistencies, and lighting mismatches.
These limitations are pronounced for individuals with diverse
skin tones, hairstyles, and facial structures, and are even more
evident when generating DFs for Indian ethnicities, where
variations in complexion, hair texture, and facial attributes
introduce additional synthesis challenges [5].

In this paper, we study state-of-the-art DF generators in
side-face synthesis and evaluate their vulnerabilities when
dealing with realistic variations in ethnicity, pose, and envi-
ronmental conditions. We also assess the efficacy of current
DF detection models in identifying these inconsistencies, pro-
viding insights into their applicability in real-world settings.
Beyond identifying weaknesses, we discuss the broader impli-
cations of generative models in security-sensitive applications
and propose future research directions to enhance both DF syn-
thesis and detection. Our recommendations include improv-
ing dataset diversity, developing adaptive generative models,
and leveraging multimodal approaches to strengthen detection
mechanisms. By addressing these critical gaps, we aim to
foster more secure and reliable Al-driven media applications
while advancing the understanding of DF vulnerabilities in
non-frontal perspectives. Improving side-face DF generation
and detection could impact fields like cybersecurity, law en-
forcement, and digital forensics.

Our primary contributions to this paper are as follows:

(i) Deepfake vulnerability analysis: We identify and categorize
the key limitations of existing DF generators in synthesizing
side-face DFs, particularly under diverse lighting conditions
and for Indian ethnicity variations.

(ii) Detection framework assessment: We examine the ef-
fectiveness of major representatives of state-of-the-art DF
detection mechanisms in identifying manipulated side-face
images and analyze their robustness against generator-specific
inconsistencies.



TABLE I: Brief details of major deepfake datasets

Year | Dataset [ #Real | #Fake | #Subject | Side-face? | Demography? | Public?

2018 | CelebA-HQ [6] 30K 30K 6217 Minimal - Yes
2019 | FaceForensics++ [7] 1000 4000 977 Limited (varied angles) - Yes
2019 | Celeb-DF [8] 590 5639 59 No (frontal celebrity deepfakes) - Yes
2020 | DFDC [9] 23654 | 104500 960 Limited (primarily frontal) - Yes
2020 | DeeperForensics [10] | 48475 | 11000 100 Minimal (diverse expressions) - Yes
2020 | KoDF [11] 62166 | 175776 403 Limited (self-recorded) Korean

2021 | FaceSynthesis [12] 100K 100K 334K Limited - Yes
2021 | OpenForensics [13] 45473 | 70325 - Limited (multi-face) - Yes
2022 | FMFCC-V [14] 44290 | 38102 83 Minimal Asian Yes
2023 | DF-Platter [15] 764 132496 454 Limited (occlusions, multi-face) Indian Yes
2024 | INDIFACE [16] 404 1668 58 Limited Indian Yes

(iii) Perspectives on generative models: We discuss broader
implications of generative models in security-sensitive ap-
plications, highlighting their impact on identity verification,
surveillance, and forensic investigations.

(iv) Future research directions: We propose recommendations
for improving DF synthesis and detection, including the need
for more diverse training datasets, adaptive generative mod-
els, multimodal detection approaches, and side-face-specific
forensic techniques.

By addressing these critical gaps, we aim to advance the
understanding of DF vulnerabilities in non-frontal perspec-
tives and contribute to the development of more secure and
reliable Al-driven media applications. Our work underscores
the importance of addressing the challenges posed by side-
face DFs, particularly in the context of ethnic diversity and
real-world environmental conditions, to ensure the responsible
deployment of generative Al technologies, while advancing the
accuracy of DF technology and the resilience of Al systems
against evolving spoofing techniques.

The remainder of this paper is organized as follows. Sec-
tion II reviews relevant literature, and Section III details the
dataset utilized, focusing on side-faces. Then Section IV ex-
plores challenges of deepfake generators. Section V examines
the performance and limitations of existing deepfake detectors,
followed by a discussion of key observations and potential
future research directions. Section VI concludes the paper.

II. BRIEF LITERATURE REVIEW

DF generation has progressed from early computer graphics
to deep learning frameworks. Traditional methods, such as
key feature matching [17], struggled with pose, illumination,
and occlusion variations. VAEs have significantly improved
latent space modeling, leading to automated DF generation,
with further advancements such as CVAEs [18] and VQ-VAEs
[19] enhancing resolution and realism. GANs revolutionized
image synthesis, with models like pix2pix [20] and CycleGAN
[21] improving identity extraction and attribute integration.
Advanced techniques, including FSGAN [22] and SimSwap++
[23], refined face-swapping, while high-resolution approaches
like StyleIPSB [24] incorporated 3D priors for improved
realism. Occlusion remained a challenge, partially addressed
by FSGAN [22]. Recently, diffusion models have emerged
as strong alternatives to GANs. Models such as DiffFace
[25] and DiffSwap [26] achieve temporally consistent video
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Fig. 1: Genuine data samples of a subject showing left, frontal,
right side faces

DFs. Hybrid architectures integrating GANs with diffusion
processes [27] further enhance synthesis.

As DF generation techniques grow more sophisticated, DF
detection has become a critical research area. Different strate-
gies are employed: some methods focus on spatial, frame-
level characteristics, analyze texture/ lighting/ facial align-
ment, sometimes use efficient architectures like BNNs [28].
Others utilize frequency-based approaches, analyze wavelet/
Fourier transforms to detect high-frequency artifacts, as seen
in Wavelet-CLIP [29]. To improve detection accuracy, multi-
modal techniques leverage diverse data sources [27].

Existing DF datasets primarily focus on frontal-face syn-
thesis, with limited attention to side-face views. As shown
in Table I, datasets such as FaceForensics++ [7], Celeb-DF
[8], DFDC [9], and DeeperForensics [10] contain extensive
manipulated and real videos, but lack substantial side-profile
data, which is crucial for improving model robustness. The
predominance of frontal and near-frontal views restricts DF
detection and generation models from generalizing effectively
across diverse facial angles. Additionally, datasets such as
KoDF [11] and FMFCC-V [14] focus on specific ethnic
groups. The need for Indian face datasets is evident, as current
datasets provide limited representation of this demographic.
INDIFACE [16] focuses on Indian subjects but remains small,
highlighting the need for a larger dataset with side-profile
Indian faces. While DF-Platter [15] provides Indian repre-
sentation, but lacks side-profile data, indicating the need for
improved datasets for DF generation and detection models
across diverse populations and facial orientations.

III. DATASET WITH SIDE-FACE

We used the IndicSideFace dataset [33], which contains both
genuine and fake side-face images suitable for our empirical
analysis. Below, we provide brief details of this dataset.

Genuine Dataset: The genuine dataset consists of images
collected from 164 individuals, with each participant contribut-
ing 6 viewpoint images: two left-side, two frontal, and two
right-side images. For each viewpoint, one image was captured
indoors and the other outdoors. Thus, the dataset includes 6
categories of side-face images: left_indoor (LI), frontal_indoor
(FD), right_indoor (RI), left_outdoor (LO), frontal_outdoor
(FO), and right_outdoor (RO). As a result, the dataset com-
prises a total of 984 (= 164 x 6) images. A sample set of
6 side-face category images obtained from a single subject is
presented in Fig. 1. Among the participants, 26 were female
and 138 were male. Out of 164 individuals, 43 wore glasses.
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Fig. 2: Synthetic fake images (marked by red colored boxes) of a male subject generated by identity swapping tools [3], [23], [30]-[32].
Source and corresponding target face images are genuine, and enclosed in blue and green boxes, respectively. (Best viewed in color)

Fake Dataset: For fake image generation, some major
off-the-shelf generators were utilized. Five distinct identity
swapping tools, Ghost [30], SimSwap [31], SimSwap++ [23],
FaceDancer [3], and InsightFace [32], along with one attribute
manipulation tool, FaceApp [34] were used.

For each genuine source image from six viewpoints, 3 target
images were utilized in each of Ghost [30], SimSwap [31],
SimSwap++ [23], and FaceDancer [3], while 2 target images
were used in InsightFace [32]. Consequently, the identity-
swapping tools generated a total of 84 (= 6x3x4+6x2) fake
images per subject. Additionally, for each genuine image of six
viewpoints, 8 fake images were produced using eight distinct
attribute filters—age, beard, expression, gender, glasses, hair
color, hair style, and skin tone, available in FaceApp [34]. As a
result, the attribute manipulation tool contributed 48 (= 6 x 8)
fake images per subject. In total, each subject contributed
132 (= 84 + 48) fake images, leading to an overall dataset
of 21648 (= 132 x 164) fake images across 164 subjects.

IV. CHALLENGES IN GENERATORS

Despite advances in DF generations [3], [23], [30]-[32],
[34], existing generators face below challenges in side-view
perspectives and a variety of environmental conditions, affect-
ing the realism and authenticity of synthetic images:

(i) Boundary artifacts: Boundary distortion, particularly
unnatural blending at the interface between synthesized and
original regions, is a key DF artifact. It becomes more evident
in high-contrast settings and degrades realism.

(ii) Texture and skin tone inconsistencies: DF generation
struggles with consistent skin texture, leading to artifacts like
unnatural smoothness variations (blurring/roughness) and tone
discrepancies. These inconsistencies are evident from side
perspectives due to difficulties in blending regions.

(iii) Lighting and shadow mismatches: DFs often exhibit
inconsistent lighting, leading to brightness and shadow mis-
matches across the face. Improper shadow rendering, par-
ticularly noticeable in side views, creates unnatural artifacts
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Fig. 3: Synthetic fake images (marked by red colored boxes)
generated by attribute manipulation tool [34]. Genuine source images
are enclosed in blue boxes.

and aids detection, especially under non-uniform illumination.
(iv) Facial symmetry and structural distortions: Generating
realistic side-face DFs is challenging due to asymmetry and
geometry issues, as models distort features like ears, jawlines,
and cheeks, compromising anatomical accuracy.

(v) Artifacts in facial hair and hair style Rendering: DF
hair synthesis often fails, creating artifacts like unnatural
hairline blending, inconsistent strand direction, and missing
facial hair. These issues are more apparent in side views,
with complex or curly/coarse hair types, and following ex-
treme modifications (e.g., age/gender swaps) which can add
unnatural styles/deformations.

(vi) Inaccurate representation of accessories: DF generators
often produce noticeable artifacts in accessories like glasses,
earrings, and headwear, causing distorted or misaligned sides.
These artifacts, particularly in occluded or angled views,
reduce realism of DF images and serve as indicators for de-
tection, underscoring need for improved generation/detection.

(vii) Performance on non-Western ethnicities: DF generation
models, primarily trained on Western facial features, often
underperformed for Indian ethnicity and underrepresented
groups. These models often fail to accurately represent cultur-
ally specific features like bindi marks or traditional jewelry.

(viii) Image quality degradation with distance from camera:
Capturing subjects at a distance degrades DF realism due to
resolution loss on smaller faces (blurring, pixelation, fewer



fine details).

(ix) Pose and viewpoint limitations: Identity-swapping mod-
els handle well frontal faces but struggle with extreme side-
face angles and consistency when partially occluded/ rotated.

(x) Background Diversity: Lighting/shadow mismatches be-
tween retained backgrounds and synthesized faces are com-
mon identity-swap artifacts. Tools may also introduce unreal-
istic reflections/shadows, notably outdoors.

Some of these challenges in identity-swapped and attribute-
manipulated fake images are shown in Fig.s 2, 3.

V. EXPERIMENTAL ANALYSIS & DISCUSSIONS

This section first analyzes experimental detector results to
understand challenges faced by them under diverse indoor and
outdoor lighting conditions with Indian ethnicity. From the
detector perspective, we formulated the problem as a binary
classification task to distinguish between genuine and fake
images. We engaged three recent off-the-shelf detectors: BNN
(Binary Neural Network) [28], Wavelet-CLIP [29], and DFDC
(DeepFake Detection Challenge)-winner Selim [35].

We evaluated performance using Precision (P), Recall (R),
F-measure (FM), Accuracy (A), and Balanced Accuracy
(BA). IndicSideFace dataset [33] poses a challenge due to
class imbalance, containing 984 genuine and 21648 fake sam-
ples, where B.A serves as a more suitable evaluation metric,
as it averages the true positive rate and false positive rate,
ensuring a balanced assessment of model performance.

A. Results

To ensure a comprehensive evaluation and to determine
whether the detectors face challenges with synthetic fake
images produced by generators, we assessed the baseline
performances of the abovementioned pretrained detectors.
Wavelet-CLIP [29], BNN [28], and Selim [35] detectors were
pretrained on FaceForensics++ [7], DFFD [36], and DFDC
[9] datasets, respectively. In our study, we employed a zero-
shot evaluation strategy for pretrained detectors, where the
entire IndicSideFace dataset [33] served as the test set, and
the results are summarized in Table II. This table presents
the performance of the detectors across six categories of
side-face images: LI, FI, RI, LO, FO, RO (refer to Section
IIT). Overall, BNN [28], Wavelet-CLIP [29], and Selim [9]
achieved 53.98%, 50.44%, and 47.34% B.A, respectively. BNN
performed better on frontal faces and outdoor categories, while
Selim performed poorly on the LI.

We also evaluated the detector performances on separate
groups of fake images generated by each of the employed
generators [3], [23], [30]-[32], [34]. For the experiments, we
paired all genuine images with individual generator-specific
fake image groups. The results with respect to BA % are
summarized in Table III. From this table, for example, it can
be observed that by employing the above pretrained BNN on a
test dataset comprising all genuine LI images and Ghost [30]-
generated fake LI images, a BA of 52.21% was achieved.
BNN and Wavelet-CLIP achieved the highest overall B.A

on SimSwap [31]-generated synthetic images among identity-
swapping tools, while Selim attained the best overall 5.4 on
InsightFace [32]. For attribute manipulation, BNN, Wavelet-
CLIP, and Selim yieled the highest overall 5.4 on gender, age,
and beard filters, respectively.

The results presented in Tables II and III indicate that
existing detectors struggle with side-face DFs. The primary
challenges are:

(i) Pose variations: Detection performances of some de-
tectors [28] drop significantly for non-frontal poses due to
reduced facial feature visibility.

(ii) Lighting conditions: Both indoor and outdoor lighting
variations cause inconsistencies in detection.

(iii) Texture and shadow mismatches: Synthetic artifacts
such as unnatural blending and shadow distortions hinder
detection models.

(iv) Dataset bias: Pretrained models primarily trained on
frontal images struggle with diverse ethnicities and pose
variations.

Enhancing DF detection robustness against these challenges
requires side-face-specific forensics, diverse datasets, and mul-
timodal detection.

B. Observations

Despite advancements, DF generation still has limitations,
particularly in realistic side-face synthesis under a variety of
real-world conditions (indoor/ outdoor lighting). Our analysis
reveals that current models struggle to maintain realism in
these perspectives, particularly for people of Indian origin.
The observed issues in side-face DF synthesis and potential
solutions are discussed below:

(i) Boundary artifacts and blending issues: DFs often ex-
hibit boundary artifacts along synthetic facial edges, which
are exacerbated by high-contrast backgrounds, increasing de-
tectability.

— Advanced blending techniques, such as adaptive Poisson
image editing or neural rendering-based smooth transitions,
can be integrated into DF models to improve boundary re-
alism. Additionally, incorporating context-aware background
synthesis can help mitigate unnatural blending artifacts.

(ii) Texture and skin tone inconsistencies: Many DF models
struggle to maintain uniform texture and skin tone, particularly
in side-face perspectives. The transition between real and
synthetic skin regions often appears abrupt, with noticeable
variations in smoothness and color consistency.

— Enhancing texture synthesis using adversarial texture
refinement networks and training models on diverse datasets
with varied skin tones can help address these inconsistencies.
Additionally, style-based generative models with adaptive tex-
ture blending can ensure smoother transitions.

(iii) Lighting and shadow mismatches: Lighting inconsis-
tencies, including unnatural shadow placement and brightness
mismatches, significantly impact DF realism. These issues
become more evident in side-face perspectives and under
varying indoor and outdoor conditions.



TABLE II: Detector performances on indoor and outdoor side-faces

Detectors || BNN [28] i Wavelet-CLIP [29] i Selim [35]

Category || LI | FI | RI | LO | FO | RO | Overall | LT | FI | RI | LO | FO | RO [ Overall | LI | FI | RI | LO | FO | RO ] Overall
P % 50.27 | 51.29 | 4948 | 51.37 | 55.61 | 51.43 51.57 5873 | 58.98 | 5898 | 58.01 | 59.23 | 59.56 58.92 4842 | 50.24 | 49.50 | 49.35 | 48.84 | 49.89 49.37
R % 78.43 | 64.71 | 73.47 | 8291 | 76.47 | 84.31 76.72 98.98 | 98.74 | 99.37 | 97.14 | 97.99 | 98.46 98.45 86.18 | 90.25 | 84.67 | 91.22 | 91.45 | 94.52 89.72
FM % 6126 | 57.22 | 59.13 | 6343 | 64.39 | 63.88 61.67 73.71 73.83 | 74.02 | 72.64 | 73.83 | 74.22 73.72 62.01 64.54 | 6247 | 64.04 | 63.67 65.3 63.69
A % 5145 | 51.99 | 49.42 | 53.88 | 57.84 | 53.46 53.01 5890 | 5895 | 59.03 | 57.85 | 59.27 | 59.68 58.95 44.68 | 48.11 | 46.66 | 47.85 | 4748 | 47.62 47.07
BA % 51.85 | 52.98 | 50.10 | 55.96 | 58.59 | 54.37 53.98 50.68 | 50.28 | 50.30 | 50.10 | 50.53 | 50.78 50.44 45.05 | 48.07 | 47.44 | 4855 | 47.69 | 47.26 47.34

TABLE III: Detector performances (BA %) on generator-specific fake image groups paired with genuine images

Identity Swapping

I Attribute on [34] ‘

[
Detector [ Category ]| Ghost [30] | SimSwap [31] [ SimSwap++ [23] | FaceDancer [3] | InsightFace [32] [| Age [ Beard | Expression |

Gender [ Glasses | Hair color [ Hair style | Skin tone [| Mean

LI 5221 54.25 52.94 50.88 49.02 51.72 | 58.18 48.47 56.52 49.93 48.89 50.51 5051 51.85

— FI 50.00 57.52 49.35 46.41 49.02 5235 | 51.10 62.71 57.35 50.21 58.07 52.67 51.92 52.98
é RI 5231 51.40 45.07 46.40 48.50 45.99 | 53.40 54.59 56.73 53.40 50.37 48.10 45.07 50.10
4 LO 54.72 53.59 53.68 56.84 52.94 49.51 55.69 61.18 66.18 58.48 57.84 59.03 47.77 55.96
% FO 55.88 60.46 54.25 52.94 55.39 61.15 | 64.10 60.24 62.31 61.57 53.45 63.24 56.75 58.59
RO 52.60 53.16 53.49 53.82 51.96 54.66 | 56.67 61.89 56.44 57.31 53.03 49.30 52.50 54.37

Overall 52.95 55.06 51.46 51.22 51.14 52.56 | 56.52 58.18 59.26 55.15 53.61 53.81 50.75 53.98

5 LI 51.21 51.21 50.91 50.68 51.06 50.90 | 49.02 50.27 50.90 51.21 50.59 50.90 49.96 50.68
b FI 50.40 50.91 50.91 50.71 50.45 50.60 | 49.99 48.77 49.99 50.30 50.60 49.99 49.99 50.28
E RI 50.61 50.61 50.61 50.51 50.30 50.30 | 49.38 50.00 50.00 50.30 50.61 50.30 50.30 50.30
@] LO 51.52 51.52 51.52 51.00 50.15 51.20 | 48.96 46.72 50.23 50.88 50.56 48.34 48.64 50.10
3 FO 51.53 51.53 5143 51.53 50.77 51.23 | 50.61 44.52 50.31 50.92 51.53 50.31 50.61 50.53
% RO 51.35 51.55 51.55 51.23 50.94 51.55 | 50.03 48.50 50.64 51.25 51.55 50.03 50.03 50.78
= Overall 51.10 51.22 51.16 50.94 50.61 50.97 | 49.67 48.13 50.35 50.81 50.91 49.98 49.92 50.44
LI 40.20 37.58 39.87 41.63 51.47 48.39 | 4851 48.26 51.96 41.25 39.06 48.73 48.73 45.05

= FI 43.87 45.75 4542 39.54 51.47 51.51 52.94 49.37 50.86 49.37 50.08 48.25 46.42 48.07
“ RI 41.53 42.10 36.10 43.44 53.63 51.40 | 51.77 51.53 50.10 48.44 48.28 48.28 50.10 47.44
£ LO 44.81 44.55 44.39 46.94 52.45 50.86 | 51.33 47.94 48.77 49.10 51.09 51.16 47.77 48.55
3 FO 47.55 47.39 46.08 45.42 50.00 43.63 | 51.96 45.96 39.00 48.63 51.96 50.40 51.96 47.69
2 RO 44.03 45.33 39.33 47.33 49.51 50.00 | 50.00 50.00 50.00 48.48 45.65 46.43 48.28 47.26
Overall 43.67 43.78 41.87 44.05 51.42 49.30 | 51.09 48.84 48.45 47.55 47.69 48.88 48.88 47.34

The use of physics-based rendering models and neural
relighting techniques can improve lighting consistency in DF
images. By learning the spatial illumination properties from
real-world samples, DF generators can produce more natural-
looking lighting and shadow effects.

(iv) Facial symmetry and structural distortions: Side-face
perspectives introduce challenges related to facial asymmetry,
leading to distortions in ear, jawline, and cheek structures.
These distortions are particularly noticeable when the subject’s
head is tilted or partially occluded.

— Geometric consistency constraints and 3D-aware gener-
ative models can be incorporated to preserve facial symmetry.
Leveraging multi-view consistency learning can also help DF
models generate structurally accurate facial features.

(v) Artifacts in facial hair and hair-styles: Rendering re-

alistic facial hair and hair-styles remains a major challenge
in DF synthesis. Inconsistent hair strand directions, missing
facial hair portions, and unnatural blending of hairlines are
commonly observed issues, especially for individuals with
complex or coarse hair textures.
High-fidelity hair synthesis models trained on di-
verse hairstyle datasets can improve DF quality. Additionally,
attention-based generative adversarial networks (GANs) focus-
ing on hair texture details can enhance realism.

(vi) Inaccurate representation of accessories: DF models
often fail to accurately synthesize accessories such as glasses,
earrings, and headwear. Issues include missing reflections,
misaligned glasses frames, and incomplete synthesis of ear-
rings or other objects.

— Integrating object-aware generative networks that explic-
itly model accessories alongside facial features can improve
synthesis accuracy. Furthermore, leveraging physically based
rendering techniques can ensure more realistic accessory rep-
resentation.

(vii) Bias in DF generation for non-Western ethnicities:

Many deepfake models are trained on datasets that predomi-
nantly feature Western facial features, leading to suboptimal
performance for underrepresented ethnic groups.

Expanding DF training datasets to include a broader
range of ethnicities and cultural markers is essential. Ad-
ditionally, developing ethnicity-aware generative models can
ensure fairer and more accurate DF synthesis across diverse
demographics.

(viii) Image quality degradation with distance from camera:

DF image quality deteriorates when the subject is farther from
the camera, leading to blurring, pixelation, and loss of fine-
grained facial details.
Super-resolution techniques, such as generative adver-
sarial networks for image upscaling, can help enhance low-
resolution DF images. Multi-scale training approaches can
also improve the robustness of DF generation across varying
distances.

(ix) Pose and viewpoint limitations: Identity-swapping DF

models often struggle with extreme side-face angles, some-
times failing to generate a consistent face when the head is
rotated or partially occluded.
Pose-aware generative models trained on multi-angle
datasets can improve synthesis quality for non-frontal faces.
Incorporating 3D morphable models can also enhance facial
consistency across different viewpoints.

(x) Environmental and background inconsistencies: DF
identity-swapping often fails to modify background elements,
leading to mismatches in lighting, shadows, and reflections.

— Implementing holistic scene-aware DF generation, where
both the foreground and background are synthesized coher-
ently, can improve visual realism. GAN-based scene adapta-
tion techniques can also help reduce background mismatches.

(xi) Movement and animation: Maintaining consistent facial
details and motion fluidity is challenging when the side-face is
in motion, leading to unnatural transitions or visual artifacts.



— 3D facial modeling and multiview training enhance
accuracy in different angles. Motion capture, temporal con-
sistency models, and facial landmark detection help ensure
smooth, fluid animations. GANs and pose-aware networks
refine movement, reducing visual artifacts and ensuring natural
transitions.

C. Future Research Directions

To address the above challenges and improve DF generation/
detection, we propose some future research directions:

(i) Dataset diversity: Generalization is enhanced by diversi-
fying training datasets in terms of variety of ethnicity, poses,
lighting, and accessories.

(ii) Adaptive generative models: Incorporating physics-
based rendering, multi-view learning, and 3D-aware GANs for
more accurate DF synthesis.

(iii) Multimodal detection approaches: Combining audio,
thermal imaging, and physiological signals with visual analysis
to enhance DF detection.

(iv) Forensic techniques for side-face DFs: Developing
specialized forensic analysis tools for detecting inconsistencies
in side-face DFs, focusing on symmetry, lighting, and texture
anomalies.

(v) Contextual Integration: Enhancing DF systems to better
blend the manipulated subject into real-world environments,
especially when generating side-face views under varied light-
ing and backgrounds.

By implementing these solutions, DF synthesis can be im-
proved for side-face perspectives while detection models can
be strengthened to counter emerging DF threats in security-
sensitive applications.

VI. CONCLUSION

DF technology continues to evolve, pushing the boundaries
of Al-generated media while simultaneously exposing new
vulnerabilities. In this position paper, we have critically ex-
amined the limitations of state-of-the-art DF generators, par-
ticularly in side-face perspectives under diverse environmental
conditions. Our analysis highlights key synthesis challenges,
including boundary artifacts, lighting inconsistencies, and dif-
ficulties in rendering facial features, especially for individuals
of Indian ethnicity. These shortcomings not only reduce the
realism of generated images but also create exploitable weak-
nesses for DF detection models. Our evaluation of existing
detection frameworks demonstrates that while they effectively
identify frontal DFs, they often struggle with side-face incon-
sistencies, leading to gaps in real-world applicability. This
underscores the urgent need for more robust and adaptive
detection techniques capable of handling diverse facial angles,
lighting conditions, and demographic variations. To address
these challenges, we advocate for a multi-pronged approach:
enhancing dataset diversity to improve generative model gen-
eralization, refining DF synthesis methods to reduce artifacts,
and developing multimodal detection strategies that leverage
spatial, temporal, and contextual cues. By strengthening both
generative and forensic capabilities, we can move toward

a more secure and trustworthy Al-driven media landscape.
Future research should balance DF generation and detection
through collaborative efforts to prevent misuse while leverag-
ing its benefits in creative and assistive Al.
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