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Abstract—Application scientists often employ feature tracking algorithms to capture the
temporal evolution of various features in their simulation data. However, as the complexity of the
scientific features is increasing with the advanced simulation modeling techniques,
quantification of reliability of the feature tracking algorithms is becoming important. One of the
desired requirements for any robust feature tracking algorithm is to estimate its confidence
during each tracking step so that the results obtained can be interpreted without any ambiguity.
To address this, we develop a confidence-guided feature tracking algorithm that allows reliable
tracking of user-selected features and presents the tracking dynamics using a graph-based
visualization along with the spatial visualization of the tracked feature. The efficacy of the
proposed method is demonstrated by applying it to two scientific data sets containing different
types of time-varying features.

IN THE ERA of big data analytics, experts regu-
larly use feature tracking algorithms to effectively
explore time-varying data. However, complex sci-
entific features undergo evolutionary events that
pose significant challenges for their robust track-
ing. To solve the correspondence problem in
tracking, researchers have proposed several tech-
niques [1], [2], [3], demonstrating their usefulness
in various scenarios. Most of these techniques

have not focused on studying the reliability of
these techniques. As a result, if a tracking al-
gorithm makes an incorrect correspondence, the
users cannot determine there is an error unless
every tracking step is manually investigated –
a time-consuming process. Therefore, a key re-
quirement for any tracking algorithm is to report
its confidence and inform the users about the
existing uncertainty.
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Most of the previous feature tracking works
can be broadly classified into two categories:
(1) attribute-based tracking [2], [4], [5], and (2)
volume overlap-based tracking [3], [6], [7]. Both
of these categories have shown promising results.
For attribute-based methods, feature correspon-
dence is established by comparing several feature
attribute values with a set of predefined fixed
threshold values. Optimal threshold values can be
difficult to determine yet the effectiveness of the
algorithm relies heavily on them. Different data
sets require different thresholds based on their
temporal dynamics. The volume-overlap based
techniques require high temporal resolution and
are not applicable when two corresponding fea-
tures do not overlap in time [1]. Given their re-
spective limitations, an uncertainty-aware feature
tracking algorithm can enhance the robustness of
both of these classes.

We present a new confidence-guided feature
tracking algorithm that overcomes the potential
limitations of both the attribute and overlap-based
tracking algorithms and increases their robust-
ness. Given several feature attributes, a fuzzy
rule based system (FRBS) captures their temporal
dynamics and estimates various feature behaviors
using a set of fuzzy rules. The target feature
is then fed into the FRBS for inference-based
tracking. The FRBS solves the correspondence
in future time steps using its learned knowledge-
base, estimating a confidence score for each
correspondence testing. The proposed system is
trained to detect the continuing features with high
confidence. When an unexpected event such as
a feature split or merge occurs, the confidence
score of the fuzzy system becomes low indicating
high tracking uncertainty and the occurrence of an
evolutionary event. Using the proposed method,
such time steps are readily identified and further
investigated to categorize the detected event. The
proposed method has several unique advantages.
Firstly, the method does not require a set of
predefined attribute thresholds for feature cor-
respondence checking. Instead, a consistent and
interpretable confidence score is generated. This
score indicates the feature matching confidence,
enhancing the overall robustness of the tracking
algorithm. Secondly, the attribute similarity mea-
sures are used to detect feature correspondence

rather than overlap criterion, making the method
applicable for temporally sparse data sets.

The effectiveness of this method is demon-
strated with two scientific data sets and with
sparsely time sampled use cases. Our contri-
butions in this work are thus twofold: (1) A
knowledge-driven fuzzy rule based algorithm ca-
pable of tracking dynamic features and quantify-
ing the feature matching confidence at each step,
and (2) Visualization of the important tracked
features over time with a new confidence-guided
tracking graph to convey the overall tracking
dynamics to scientists.

RELATED WORKS
Feature tracking is an important task in sci-

entific data visualization. Samataney et al. [2]
proposed an attribute-based correspondence ap-
proach to track volume features in scientific
data sets. Reinder et al. [4] introduced a similar
attribute-based feature tracking algorithm. Silver
and Wang [3] tracked features by exploiting
volume overlap criteria. Ji and Shen used the
earth mover’s distance to design an optimum
feature tracking algorithm [1]. Using a predictor-
corrector method, Muelder and Ma introduced a
new algorithm for efficient feature tracking [8].
Dutta and Shen [5] proposed feature tracking
using distribution-based data sets. Saikia and
Weinkauf introduced a global feature tracking al-
gorithm where feature correspondence was mea-
sured using volume overlap and distribution dif-
ferences [7]. Schnorr et al. [9] introduced a two-
step optimization algorithm for feature tracking.

KNOWLEDGE-DRIVEN TRACKING
This work makes use of a fuzzy rule based

system (FRBS) to quantify the tracking confi-
dence. The FRBS produces a confidence score
at each step for the match so users can judge
tracking reliability. When a sudden evolutionary
event, e.g., a feature split/merge, the matching
confidence score drops significantly, prompting
further user attention. Visual exploration of the
tracking results is conducted by volume visual-
ization and via a new tracking graph depicting
the overall tracking dynamics. Note that feature
extraction is not covered in this work and the
methodology assumes features can be extracted
using any appropriate feature extraction algo-
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rithm.
Given a target feature fi and a set of extracted

candidate objects O = {O1,O2, ...,Ok}, the goal
of a tracking algorithm is to identify the object
from the set O which correctly corresponds to the
target feature. Traditional attribute-based feature
correspondence detection in this context has been
shown to be promising [2], [4], [5]. The corre-
spondence criteria is measured by computing the
differences between several attribute values and
then checking the differences against predefined
hard thresholds. The best match is determined
by picking the closest object satisfying all the
threshold conditions. If no match is found, a
feature dissipation/death event is indicated. A po-
tential drawback of this technique is that it relies
upon multiple hard thresholds. These thresholds
are generally: (a) set manually, (b) depend on
the data set and feature dynamics. Determining
a consistent and robust set of thresholds is non-
trivial, often requiring expert tuning.

ESTIMATION OF TEMPORAL FEATURE
DYNAMICS

We propose a new knowledge-driven fuzzy
rule based tracking algorithm that first captures
the feature dynamics from the temporal evolu-
tion of representative features and then uses the
acquired knowledge to track other features. The
motivation of using a fuzzy rule based system
to address this problem are twofold: (1) a fuzzy
rule based system provides an effective way to
map the attribute based correspondence detection
problem to a rule based system without explicitly
specifying any hard thresholds; and (2) the work-
ing principle of the fuzzy learning algorithm is
well understood, reducing the impact of model
uncertainty while analyzing the results. To com-
pactly model the dynamic behaviors of the fea-
tures, we use a set of fuzzy rules where each rule
models a specific behavioral pattern of the feature
dynamics. To capture the temporal dynamics of
a feature, we compute four key attributes for
each object: (1) mass (M), (2) volume (Vol),
(3) centroid (C), and (4) velocity (Vel). These
quantities are computed via the methodology de-
scribed in [2], [4]. Besides these four attributes,
other feature attributes related to feature shape,
orientation, and higher order moments can also
be added to the fuzzy analysis system.

FUZZIFICATION OF FEATURE ATTRIBUTE
SIMILARITIES Given a set of candidate ob-
jects, the fuzzy system aims to produce the high-
est output response for the true corresponding
object. The similarity between a candidate ob-
ject and the target feature can be estimated by
measuring the difference in their attribute values.
These differences are then used as the input to
the fuzzy system. Conceptually, the smaller the
differences are, the higher the similarity between
the object and the target feature is, and hence,
a higher confidence output is desired. Since the
fuzzy system works in a fuzzy domain where the
input is mapped to a fuzzy value, a transformation
of the attribute difference values into the fuzzy
domain is necessary. A consistent and compa-
rable representation of the difference values in
the fuzzy domain is achieved using membership
functions which quantify the degree of attribute
differences to a fuzzy value ∈ [0,1]. This method
is known as fuzzification. Note that we can quan-
tify the attribute similarity criteria during tracking
without requiring predefined thresholds. In order
to define the fuzzification process, we use the
Gaussian membership function (GMF). Note that
the GMF is one approach possible from finite
mixture models (see e.g., [10]) and other types of
membership functions can also be used. Given x,
an attribute difference value, with x̄ as its mean,
and σ as its standard deviation, ∆x = x− x̄. The
GMF is formally defined as:

GMF(x) = exp(−∆x2/2σ
2) (1)

If, for example, ∆Vol represents the difference in
volume attribute for an object when compared
with the volume of the target feature, then by
using a GMF, ∆Vol gets mapped to a fuzzy value,
reflecting the degree of similarity to its associated
target feature volume.

CONSTRUCTION OF KNOWLEDGE-BASE
FOR TRACKING To build the knowledge-base
for tracking, we employ a fuzzy clustering-based
learning scheme. The purpose of this clustering-
based learning is to extract the natural groupings
from the known training data which can be used
to concisely depict the behaviors of the features in
the data in terms of several fuzzy rules [11]. The
correspondence check between a candidate object
and the target feature is done using an attribute
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vector containing the attribute difference values.
Thus a vector of the form {∆Vel, ∆M, ∆Vol, ∆C}
becomes an input for the fuzzy system.The final
output from the fuzzy system is a scalar response
value. The goal is to produce a high response if
all difference values are small, indicating that the
candidate object is very similar to the target fea-
ture. These criteria associate a high possibility for
that candidate object to be the true corresponding
feature.

Generation of training data.
To capture the dynamic pattern from attribute
value differences, we first create training data
that conforms with the correct tracking results
and then use it to learn the parameters of the
fuzzy system. During training, the system will
first learn the parameters for the Gaussian mem-
bership functions. To model the output function,
a least square estimation (LSE) is required. The
coefficients of the LSE will be learned using the
training data.

Several representative features are selected
from the data and manually tracked over time.
While labeling the features, all segmented fea-
tures are visualized for each time step and the
correct corresponding feature can be easily se-
lected by visually inspecting them. During the
labeling process, each representative feature is
tracked for a span of 10-15 time steps to collect
the desired training data. Note that there is a set
of candidate objects at each time step and only
one of them gives the correct correspondence.
We measure the 4 attributes {∆Vel,∆M,∆Vol,∆C}
for each of the candidate object at each time
step. Since we know the ground-truth feature, we
assign a high response value (0.9) to the output
variable for the correct corresponding feature, and
a low response (0.1) is set to the output variable
for all the other objects. This results in a 5D
labeled training data (the 4 attribute components
plus the assigned scalar response).

Estimation of Parameters for the GMFs.
Given this 5D labeled training data, it can be
grouped into several clusters with each cluster
modeling a specific behavioral pattern of the
features. For example, a cluster where all the
input attributes are very low and the output is
high will represent the group of objects with
a very high chance of being the target feature.

Such a cluster can be formally modeled as a
fuzzy rule in the form: IF (antecedent) THEN
(consequent). For our feature tracking application,
such a predicate-based fuzzy rule can be written
as: IF (∆Vel is LOW AND ∆M is LOW AND
∆Vol is LOW AND ∆C is LOW) THEN output
is HIGH. Similarly, another cluster where the
input values are high and the output value is
low can be translated as: IF (∆Vel is HIGH
AND ∆M is HIGH AND ∆Vol is HIGH AND
∆C is HIGH) THEN output is LOW. To extract
such dynamic rules, we apply a fuzzy-C-means
(FCM) clustering algorithm to this 5D training
data first. The efficiency of this FCM in extracting
the fuzzy clusters has been demonstrated in [12].
Given X = {x1,x2, ..xn}, (n is the number of data
points) as the input to the FCM, the algorithm
produces a set of centroids V = {v1,v2, ..vc} (c
is the number of clusters) and a membership
matrix M of dimension c×n by minimizing an
objective function [11]. An element of mik of this
membership matrix represents the membership
value of kth data point in ith cluster.

Each cluster center obtained from the FCM
becomes a representative of one of the feature’s
behavioral patterns as described above. The de-
gree of fulfillment for each of the sub-clause in a
rule of the form (∆Vol is LOW) is estimated by
its associated GMF. The estimated centroids for
each cluster obtained from the FCM become the
suitable choice for means of the corresponding
GMFs, and the standard deviation of each GMF
is computed as suggested in [11], [12].

CONFIDENCE GUIDED FEATURE TRACKING
Given the GMFs, we discuss the inference

technique for the fuzzy system and how new
features can be tracked using it. Here we adopt
the widely used Takagi-Sugeno fuzzy rule based
system (TS-FRBS), which has been shown to be
effective in modeling dynamic systems [11]. The
output response in a TS-FRBS is modeled as a
linear function of input variables. The value of
this output indicates the confidence of the system
for the input tested. Formally, given a specific
input attribute vector (x1, ...,xq), and a set of
fuzzy rules R j, ( j = 1,2, ..c) where c is the
number of rules and q is the number of attributes,
the output is inferred as follows. First, the input
is tested with each of the rules and a degree of
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Figure 1. Demonstration of the fuzzy rule estimation scheme using a 2D bivariate data. Two rules are generated
and each color shows one rule. Five test points from Table 1 are shown using red crosses in Figure 1a.

match is computed, called the firing strength of
that rule for the input. The firing strength α j of
jth rule is computed as:

α
j =GMF j

1 x j
1 ∧ GMF j

2 x j
2 ... ∧ GMF j

q x j
q (2)

where GMF j
1 ,GMF j

2 ... GMF j
q are the GMFs of

the form described in Equation 1 for the jth
rule, ∧ is the fuzzy T-norm conjunction oper-
ator [11], and we have used the multiplication
as our conjunction operator to combine the sub-
clauses in each rule. The firing strength intuitively
estimates the degree of match of rule R j for the
given input by combining the contribution coming
from each feature attribute clause using the fuzzy
conjunction operator. So, if most of the clauses
in the input have satisfied strongly in a rule, then
the firing strength of that rule for the input will
be high. Now, since the output variable y j is
a linear function of the input variables, so the
output function ψ(·) can be represented as:

o j = ψ(x j
1, ...,x

j
q) = β

j
0 +β

j
1 ·x

j
1+ ...+β

j
q ·x j

q (3)

where β
j

0 ,β
j

1 ...β
j

q are the coefficients of the linear
function ψ(·). Then the final output response O ,
inferred from c rules for a specific input x1, ...,xq,
is given as the average of all o j values weighted
by their firing strengths and can be expressed as:

O = (
c

∑
j=1

α
j ·o j)/(

c

∑
j=1

α
j) (4)

Given the GMFs parameters and the training data
generated from the attribute difference values,

the parameters β
j

0 ,β
j

1 ...,β
j

q are computed by op-
timization with respect to the training data and
the optimization reduces to a linear least square
estimation problem as described in [12]. So, at
every time step, the extracted candidate objects
can be evaluated using this TS-FRBS, and the
object that produces maximum output response is
identified as the corresponding continuing feature
and this process is repeated over time. Algo-
rithm 1 provides a detailed pseudo code for the
proposed tracking algorithm.

ILLUSTRATION OF THE FUZZY SYSTEM
USING SYNTHETIC DATA

In Figure 1, we illustrate working principles of
this fuzzy system using a synthetic bi-variate 2D
data set obtained by randomly sampling points
(Figure 1a) from two 2D multivariate Gaussian
distributions centered at (2,8) and (8,2) respec-
tively. The output value for points generated from
the Gaussian centered at (2,8) or (8,2) was set to
0.0 or 1.0, respectively. This resulted in a 3-tuple
training data, and two clusters, i.e., two fuzzy
rules were constructed. Each color represents one
fuzzy rule in Figure 1c.

Table 1 shows testing results of five test points
to demonstrate the algorithm functionality. These
points are selected such that the first point is close
to (2,8) and the last point is close to (8,2), with
the remaining points in between. We see that the
output for the first point is 0.1096, close to zero,
while for the fifth point, the output is close to
1. The point which is equally distant from the
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two cluster centers produces an output of 0.5136.
This point can be considered as an uncertain
observation since the fuzzy system was not able
to produce a high confidence. For cases like these,
when a hard classification is not suitable, the use
of a fuzzy system allows us to make a confidence-
driven decision.

Algorithm 1: TS-FRBS inference-based
feature tracking algorithm with uncer-
tainty estimation.

Output1: List of all tracked features
from all time steps.

Output2: List of all confidence scores
from all time steps for all objects.

Initialization:
start time = t0
end time = tn
conf TH = User specified confidence
value

t f = User selected target feature to track
for t ← t0 to tn do
{o1,o2, ..,ok} = Extracted candidate
objects at time t using an existing
feature extraction algorithm.

confidence scores = []
for oi ← o1 to ok do

oatt di f f
i =
Comp attr di f f (oi, t f )

c = T SFRBS(oatt di f f
i , t f )

confidence scores.append(c)
max score, matched fid =
Find best match(confidence scores)

if max score < conf TH then
Investigate the time step for
evolutionary events.

else
t f = feature(matched fid)
Continue tracking t f to next time
step.

RESULTS
While generating the rule based systems, the

number of rules are often chosen based on ap-
plication needs [12]. In our case, we found that
3 ∼ 5 rules are generally sufficient to capture
the feature dynamics. We chose to use 3 rules

Table 1. Results of several test points to demonstrate the
working of the fuzzy rule based system.

Point id Input test point Generated output
response

1 (2.5, 7.5) 0.1096
2 (3.5, 6.0) 0.3084
3 (5.0, 5.0) 0.5136
4 (6.0, 3.5) 0.7125
5 (7.5,2.5) 0.9176

for both data sets to obtain consistent results.
A threshold is set on the confidence value to
flag features for potential merge/split events. This
threshold was set to a high value of 0.7 for all
experiments. When the confidence value dropped
below 0.7, the features in those time steps were
investigated further for evolutionary events. All
the experiments were done on a MacBook Pro
with a 3.1 GHz Quad-Core Intel Core i7 proces-
sor and 16 GB memory. Both training and testing
code were run serially.

TRACKING IN VORTEX DATA SET
The Vortex data is a pseudo-spectral simula-

tion of coherent vortex cores. The data set has a
spatial resolution of 128×128×128 and 30 time
steps. The scalar variable is vorticity magnitude.
The features are identified as segmented regions
with segmentation criterion: scalar value ≥ 7.0
(high vorticity values). Each connected compo-
nent is treated as a separate feature. The training
data was generated by tracking a representative
vortex manually over 10 time steps and the four
attributes for each object were computed. For the
correct corresponding feature, a confidence value
of 0.9 was assigned and set to 0.1 for all the other
objects.

The fuzzy system generated consists of 3 rules
shown in Figure 2(left). The training set consisted
of 88 data points and 10.48secs were needed to
train the fuzzy system. Each rule is shown using
a different color and has four GMFs, one cor-
responding to each feature attribute. We observe
that Rule2 (blue), captures the low valued feature
attribute differences, modeling objects similar to
the target feature. Thus this rule will contribute
the most when the final output will be computed
using Equation 4. The other two rules (green and
blue) will contribute for the objects which are
not similar to the target feature and will produce
a low confidence score.
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Figure 2. Membership functions for the Vortex data (left) and MFiX-Exa data (right). Each color represents one
of the fuzzy rules.

Figure 3(top) shows the tracking results of a
vortex feature. The tracking algorithm took 0.54
secs on average per time step to detect the correct
corresponding feature. The tracking results were
manually verified to ensure the correctness of
the proposed method. Also, a video is provided
that shows the tracking for all time steps. The
tracking graph (top) shows the overall tracking
dynamics. The target feature, selected at t=10,
was tracked consistently for 15 time steps. In the
tracking graph, extracted objects from each time
step are stacked vertically and time steps are laid
out horizontally. Each node represents an object
at a specific time step and the node color and
size shows the tracking confidence value inferred
by the fuzzy system. The red line through the
graph connects the correct corresponding object
over time as it is being tracked reliably and the
confidence score is the highest for this object
at each time step. This graph also presents the
matching confidence values for the other tested
objects during tracking at each time step so
that the overall reliability and the dynamics of
the fuzzy tracking algorithm can be studied. At
t = 25, the maximum confidence score was 0.643
(< predefined threshold of 0.7) and so this time
step was further investigated, with a split event
found. Figure 3(bottom) shows the spatial volume
visualization of the tracked feature (red) for three
different time steps, along with all the other
candidate objects present (green). Note that as
the features change their position and shape over

time, the proposed fuzzy system is able to track
the target feature correctly with high confidence.

TRACKING IN MFIX-EXA DATA SET
Our second case study uses data generated

from MFiX-Exa, a multi-phase flow simulation
code (amrex-codes.github.io/MFIX-Exa) used to
study reactions in fluidization beds of chemical
looping reactors. In this study, we used the parti-
cle density field. An important phenomenon in
this density data is the formation of bubbles,
which generally reflect low density regions. A
bubble detection algorithm identifies the bubble
features as connected regions with very low den-
sity. The spatial resolution of the density field
used is 128×16×128. Since the simulation data
changes slowly over time, the simulation data
was stored at every 100th iteration to reduce
overall storage, resulting in 408 time steps. Since
our tracking method does not need the overlap
criterion, it is well-suited for this sparsely time-
sampled data set.

We selected two representative bubbles and
tracked them manually to generate the training
data. The fuzzy system with 3 rules generated
is shown in Figure 2(right). The training set
consisted of 90 points, taking 22.68 secs to train.
As before, Rule2 (blue) captures the low valued
feature attribute differences representing the ob-
jects that are very similar to the target feature.

We use these fuzzy rules to track bubbles in
the data set and find that tracking a bubble takes
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Figure 3. Feature tracking result for Vortex data set. The confidence-guided tracking graph is shown (top) for
the tracked time window. Note at t = 25, the confidence value dropped below 0.7, indicating the occurrence of
a feature split. The tracked feature is shown at three different time steps (bottom).

0.1225 secs on average per time step. To further
study the effectiveness of the technique when
only sparsely sampled time steps are available,
we fed the system every 4th time step (i.e.,
every 400th simulation iteration snapshot). The
resulting tracking graph for a selected bubble
from time step 19300 is shown in Figure 4. The
proposed technique tracked the bubble correctly
even for sparsely sampled time steps. The spatial
volume visualization of three representative time
steps is shown in Figure 4(bottom). All the other
bubble features are shown in black for context
while the tracked bubble is highlighted in reddish-
yellow. From the tracking graph, we observe that
at t=23800, the confidence score drops below the
confidence threshold (0.7). Further investigation
reveals that the bubble merged with another bub-
ble, causing the low confidence value.

DISCUSSION AND CONCLUSION
The key advantage of the proposed tracking

algorithm is that it does not need a set of user-
specified hard thresholds for detecting correspon-
dence among feature attributes. Earlier attribute-

based techniques relied upon a multi-threshold
based correspondence detection. Our proposed
method extends the robustness of such algorithms
by removing the requirement of those preset
thresholds and instead a consistent and inter-
pretable confidence score is used across different
data sets. We also showed that the proposed tech-
nique can be used on sparely time-sampled data
sets and feature overlap is not required. However,
we found that as time steps became more sparse,
the fuzzy system made erroneous correspondence.
We have tested the proposed system on two
challenging data sets and demonstrated promising
tracking results.

A potential limitation of our work is that the
technique can only detect feature continuation
events automatically with high confidence. For
feature split/merges, the correct categorization of
such events requires user interaction. Hence, in
the future, we plan to extend our technique to
detect those events automatically. Also, we plan
to include more feature attributes in the system,
explore other mixture models as the fuzzification
basis, and study the generalizability of the pro-
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Figure 4. Top: Feature tracking result for the MFiX-Exa data set. The confidence-guided tracking graph is
shown for the tracked time window (top). At t=23800, the confidence value dropped below 0.7 indicating the
occurrence of a feature merge. Bottom: The evolution of the feature at three different time steps.

posed fuzzy system for tracking features in situ.
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