DAVi: A Slim, Secure and Scalable Framework for Developing
Data Analytics and Visualization Platforms

Manish Agrawal’ Prashik Ganer”

ma331919@gmail.com
IIT Kanpur IIT Kanpur
Kanpur, Uttar Pradesh Kanpur, Uttar Pradesh
India India

Tippireddy Yashwanth
yashwantht24@iitk.ac.in
IIT Kanpur
Kanpur, Uttar Pradesh
India

Abstract

Modern scientific, commercial and industrial systems continuously
generate large volumes of data in the form of event logs, streaming
telemetry, controller data, etc. The task of real-time analysis and
visualization of this data is essential to gain actionable insights
and troubleshoot any latent issues. However, existing solutions
frequently present a choice. Robust business intelligence (BI) tools
abound and offer excellent visualization capabilities but limited
flexibility for data scientists to implement custom programmatic
solutions. On the other hand, data science platforms offer sophisti-
cated coding environments but lack advanced visualization tools.
Existing solutions also struggle to offer fine-grained access control
and do not allow automated alerts to be delivered to user subgroups
should anomalies or failure states be detected in data. To bridge
this feature gap, this paper introduces DAVi (Data Analytics and
Visualization Interface), a secure, microservice-driven platform that
delivers a unified user experience combining advanced visualization
capabilities and fully fledged development workflows. A novel fea-
ture of DAVi is the in-built real-time notification system that allows
data scientists to send automated notifications to an identified sub-
set of users, for example, if an Al model detects impending system
failure or deterioration in service quality. DAVi overcomes several
technical challenges that may be of independent interest, such as the
creation and integration of a honeypot-grade sandbox that must still
be permitted access to restricted lines of communication. DAVi of-
fers a single-tenant architecture at the organization level but allows
the flexibility of per-user container isolation. Its core innovation
lies in the headless integration of a powerful open-source BI engine,
Apache Superset [5], with a React-based application. The archi-
tecture is sensitive to the demands of high-security environments,

“Work done while the author was a student at IIT Kanpur

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISEC 26, Jaipur, India

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXX-X-XXXX-XXXX-X/XXXX/XX
https://doi.org/XXXXXXX.XXXXXXX

prashik.ganer@gmail.com

Soumya Dutta
soumyad@cse.iitk.ac.in
IIT Kanpur
Kanpur, Uttar Pradesh

Khushwant Kaswan
khushwantk24@iitk.ac.in
IIT Kanpur IIT Kanpur
Kanpur, Uttar Pradesh Kanpur, Uttar Pradesh
India India

Amit Bhasita
amitnb24@iitk.ac.in

Purushottam Kar
purushot@cse.iitk.ac.in
IIT Kanpur
Kanpur, Uttar Pradesh
India

including centralized LDAP [27] authentication, fine-grained role-
based access control (RBAC), isolated on-demand JupyterLab [19]
sandboxes, session management, activity logging, automated snap-
shots with point-in-time data restoration, among others. DAVi offers
a modular architecture with replaceable components and a secure,
extensible, and comprehensive solution for modern data analytics.

CCS Concepts

« Information systems — Computing platforms.

Keywords

Data Analytics, Visualization, Microservice Architecture, Honeypot-
grade Sandboxing, Headless System Integration, Fine-grained Ac-
cess Control, Automated Real-time Notifications, Isolation

ACM Reference Format:

Manish Agrawal, Prashik Ganer, Amit Bhasita, Khushwant Kaswan, Tip-
pireddy Yashwanth, Soumya Dutta, and Purushottam Kar. 2026. DAVi: A
Slim, Secure and Scalable Framework for Developing Data Analytics and
Visualization Platforms. In 19th Innovations in Software Engineering Confer-
ence (ISEC 2026), February 19-21, 2026, Jaipur, India. ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Effective data-driven strategies are essential to the smooth func-
tioning of large, complex systems, especially those deployed at
organizational levels. These systems produce high-velocity, contin-
uous streams of data generated by event logs, telemetry channels,
controller data, and others. The data streams may include both
synchronous and asynchronous channels, may cover thousands
of parameters, and may include data with diverse data types, ar-
rival frequencies, and ranges. To ensure operational success, extend
asset lifespan, and prevent catastrophic failures, it is essential to
have the ability to monitor such information in real-time, detect
subtle anomalies, and forecast future states. As manual analysis
becomes quickly overwhelmed by both the amount and complexity
of this data, there is an urgent need for a scalable, secure, and robust
platform to deliver quick, actionable insights.

Design Considerations. This paper reports the design, develop-
ment and implementation of the DAVi platform. DAVi was created
to cater to the needs of an organization of national importance

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ISEC °26, February 19-21, 2026, Jaipur, India

dealing with sensitive information and was tasked with offering a
feature-rich, web-based platform that could automate critical moni-
toring tasks by leveraging data generated by a large in-house data
acquisition platform deployed within that organization. More than
just a visualization dashboard, DAVi needed to be an integrated
platform simultaneously offering the capabilities of data analytics,
interactive visualization, and real-time monitoring, all while assur-
ing fine-grained access control and the security of sensitive data.
The platform was charged with the task of reducing the burden of
manual oversight, allowing data scientists and engineers within
the organization to focus on higher-order decision-making and
analysis. Key asks were to ensure smooth ingestion of data from
an existing infrastructure, be compatible with existing organiza-
tional workflows, and integrate automated alert mechanisms and
an advanced analytical workflow.

DAVi ’s design was underscored by the belief that an effective
analytics platform for scientific and engineering domains must
unify the traditionally separate paradigms of business intelligence
(BI) and data science. Current tools force a trade-off: on one side
are user-friendly BI tools such as Tableau and Power BI, which
offer powerful visualization and self-service exploration but are
fundamentally limited when custom modeling is required (say, writ-
ing custom anomaly detection models, data wrangling code, etc.,
that go beyond the capabilities of SQL queries or drag-and-drop
visualizations). On the other side are data science environments,
epitomized by notebooks, that provide a high level of flexibility
but are often disconnected from production-grade visualization,
governance, and access-control workflows.

DAVi’s core innovation is to eliminate this dichotomy by inte-
grating both capabilities into a single application and abstracting
the underlying technical complexity from the end-user. DAVi allows
scientists to move fluidly from viewing a high-level dashboard to
launching an isolated, secure coding environment, all within the
same interface and using identical data sources. DAVi’s architec-
tural design was heavily influenced by stringent client requirements,
including absolute data sovereignty, high security, long-term main-
tainability, and the strategic avoidance of vendor lock-in. These con-
siderations made commercial, cloud-based, off-the-shelf products
unsuitable. The selection of an open-source core and the develop-
ment of a bespoke, containerized microservices-based architecture
thus became critical to ensuring full control over the platform’s
security, deployment environment, and future evolution.

Contributions. This paper presents the design, architecture,
and implementation of the DAVi platform. The development of
this framework required solving several technical challenges, such
as the creation of secure, sandboxed compute environments with
high-grade isolation such as those found in honeypots [12] but with
secured ingress and egress routes. Other key contributions are:

o The design and implementation of a microservices-based, air-
gapped, on-premise deployable analytics platform providing
a unified experience for BI and data science applications.

o A demonstration of the "headless BI" pattern, successfully in-
tegrating a powerful BI engine (Apache Superset) providing
seamless data ingestion from an existing infrastructure.

o The development of a robust, single-tenant, role-based access
control governance model leveraging LDAP-based AuthN,

Agrawal et al

JWT, and HttpOnly cookie-backed AuthZ, express-session
& Redis-backed session management, Redmine [1] backed
organizational issue tracking, JupyterLab backed coding en-
vironment, socket backed secure real-time user-user, admin-
all and code-user notifications, and additional features such
as user session management, backup, etc.

o A fully containerized deployment model, where all core
components—including microservices, Superset, and Jupyter
notebooks—are orchestrated using Docker [16], ensuring
portability, scalability, and simplified maintenance.

Although isolated containers exist in previous works, DAVi offers
novel master—-worker orchestration, centralized identity, integrated
notification and alerts pipeline, headless BI integration, authen-
ticated compute workflows, session management, tamper-proof
activity logging, issue ticketing and encrypted backup/recovery, all
designed for air-gapped high-security environments.

2 Related Work

To contextualize DAVi’s contributions, we survey the current land-
scape of data analytics and visualization platforms. Existing solu-
tions can be broadly divided into two categories — BI engines/suites
and integrated data science platforms.

Apache Superset. At the core of DAVi’s Bl capabilities is Apache
Superset, a modern, open-source data exploration and visualization
platform. The platform was created by Maxime Beauchemin and
joined the Apache Incubator in 2017, graduating to a Top-Level
Project in 2021. Superset is a web-based application offering a rich
feature set, including a powerful visualization builder with over
40 chart types, a powerful SQL IDE known as "SQL Lab", RBAC
(Role Based Access Control) and RLS (Row Level Security), and a
plugin architecture enabling custom visualizations. It is designed
to connect to a wide array of SQL-speaking data sources from
traditional relational databases to modern data warehouses and real-
time OLAP engines. However, Superset doesn’t natively provide
workflows for advanced session governance, push-based real-time
notifications, or coding environments.

Industrial and Academic Adoption of Superset. Preset [6]
is the commercial, fully managed, SaaS version of Superset, cre-
ated by Superset’s original developers. Superset has emerged as an
enterprise-grade platform, being adopted by numerous technology
companies. For example, Dropbox chose Superset to standardize
its internal analytics, consolidating nearly ten different tools into
one, citing its security, extensibility, and alignment with their exist-
ing Python/Flask stack [7]. The Nielsen Corporation also replaced
their previous patchwork of paid solutions with a unified dash-
boarding solution using Superset and embedded it’s dashboards
into their already existing client-facing applications, leveraging Su-
perset’s plugin architecture to add new visualization patterns [20].
Other industrial adopters include Microsoft Bing, who utilized a
customized version of Superset for their internal self-service analyt-
ics platform [21], TransIT by SolDevelo [24] offers transportation
analytics solutions, Funda.nl [10], a real estate marketplace, selected
Superset due to its “fully open-source, low barrier” requirements
and utilized Superset’s embedded dashboard for market insights,
and technology companies [11, 25] such as Airbnb, American Ex-
press, Lyft, Netflix, and Twitter. Within academia, Superset is being

DAVi: Developing Data Analytics and Visualization Platforms

increasingly adopted as a dashboarding layer for research data sys-
tems by leveraging its ability to create lightweight, reproducible
visualizations on top of diverse data [8, 9, 14, 15, 17, 18, 23]. Addi-
tionally, as shown in Table 1, Superset provides the widest set of
features among other BI platforms, offering both cost-effectiveness
and strong extensibility. Combined with widespread industrial-scale
and academic adoption, this made Superset a natural choice for a
BI core around which DAVi is built.

Pure-Play BI Tools. Commercial BI platforms such as Tableau
and Power BI are market leaders in self-service analytics and cor-
porate reporting but are often proprietary and expensive. Their
strengths are polished user interfaces, a vast library of out-of-the-
box visualizations, and strong integrations with enterprise soft-
ware ecosystems. However, these platforms are primarily designed
for data consumption and exploration through graphical inter-
faces. When complex programmatic workflows, custom statistical
or AI/ML modeling are required, users typically export data and
switch to a separate environment like Python or R.

Integrated Data Science Platforms. Commercial SaaS solu-
tions like Dataiku [3] and Domo [2] resemble DAVi’s goal of provid-
ing a unified environment, but at a cost. Dataiku supports the entire
machine learning lifecycle (MLOps) with strong governance, collab-
oration features and visualizations. While its MLOps functionality
is more extensive than DAVi ’s current scope, DAVi ’s integration
of Superset provides a more mature and flexible visualization layer
than Dataiku’s native charting tools. Moreover, DAVi relies on fully
open-source components and a fully containerized, microservices-
based model. The resultant independence from commercial vendors
addresses the concerns of high-security environments, where data
sovereignty, maintainability, and freedom from vendor lock-in are
non-negotiable. To our knowledge, no existing open-source system
combines DAVi’s capabilities into a unified platform tailored for
secure, air-gapped deployments.

Supporting Technologies for DAVi. In addition to analytics
platforms, several other systems are essential to the design of DAVi.
Message brokers such as Apache Kafka [13] provide fault-tolerant
pipelines for streaming and archived data capture. DAVi leverages
Kafka in this “data stream capture” role, persisting data streams
into relational stores. Kafka has become the de facto standard for
real-time streaming pipelines, enabling high-throughput ingestion
and distribution of streaming data. On the BI side, Apache Superset
serves as the foundation for DAVi ’s visualization layer, providing
a flexible and extensible alternative to commercial BI platforms.
For secure, directory-backed authentication, LDAP [27] continues
to be a widely adopted standard, often deployed in combination
with Redis for session management and performance optimization.
To support interactive features, DAVi draws upon real-time com-
munication frameworks such as Socket.IO [22], which enable live
user-to-user and code-to-user notifications within the interface.
The entire system is served via Nginx [26], a production-grade web
server that provides scalability, load balancing, and security hard-
ening. Collectively, these technologies form the backbone upon
which DAVi is built.

ISEC °26, February 19-21, 2026, Jaipur, India

3 Usage Scenarios and Design Considerations

DAVi’s development was motivated by specific requirements that
could not be adequately met by any single off-the-shelf commercial
product or open-source project. DAVi was required to serve as
the central hub for monitoring and development tasks for a large
organization with an existing in-house data collection platform
with the following functional requirements:

o Legacy Integration: ingest high-volume telemetry data from
the organization’s existing data acquisition platform.

e RBAC: provide fine-grained, role-based, access control. Per-
missions cover datasets, dashboards, compute resources etc.
Users are permitted to assume multiple roles simultaneously.

e Comprehensive BI Dashboard: provide a rich, interactive
BI dashboard for visualizing parameters, identifying trends,
and monitoring system status.

e Sandboxed Environment: offer an isolated coding environ-
ment accessible only via DAVi interface allowing authenti-
cated users to safely execute custom code. This environment
should be sandboxed ensuring that experimental code exe-
cutions cannot compromise security or system integrity.

e Real-Time Notification Mechanism: provide real-time push
notification service across different contexts—for example,
between users, between a user and the coding environment,
or between monitoring Al agents and end-users.

e Security: LDAP backed, fine-grained authentication, includ-
ing separation of admin and user privileges. All significant
user actions—from logins to dashboard access and code exe-
cutions—must be logged in a secure and audit-able manner.

o Recoverability: offer automated snapshots of user workspaces
volumes at regular intervals, allowing user data to be recov-
ered in the event of container failure, with a tiered retention
policy and point-in-time restore support.

Example Usage Scenarios. Apart from its deployment at its
primary client, DAVi’s modular and flexible design choices allow it
to be used in a variety of other scenarios e.g., augmenting SCADA
platforms in industrial plants to offer insights on plant health and
using Al-models to raise alerts about any (impending) outlier or off-
nominal behavior, augmenting security operations centers (SOC)
to allow Al-based alerts for incipient attacks or intrusion attempts,
augmenting schedulers for data centers to offer Al-based insights
into resource utilization and efficiency, creating monitoring and
servicing platforms for sensor network sending primary data and
secondary telemetry about device health, etc.

4 System Design and Implementation

DAVi integrates multiple open-source technologies into a cohesive,
security-conscious architecture. This section details the design and
implementation of the core modules of the platform.

4.1 Technical Challenges

Developing the DAVi framework required overcoming several tech-
nical challenges that may be of independent interest.

Honeypot-grade Sandboxing. The stringent security concerns of
the client organization required the creation of sandboxes offer-
ing honeypot-grade isolation [12] typically reserved for malware

ISEC °26, February 19-21, 2026, Jaipur, India

Agrawal et al

Table 1: Comparison of Popular BI Platforms

Feature / Function

‘ Tableau Power BI Qlik Sense Looker ‘ Apache Superset

Cost (Open-source or Free)
Customizable
Wide Database Support v
Self-Service BI v
Advanced Visualizations v
Real-Time Data Processing v
Scalability for Large Datasets v
Interactive Dashboards v
X
X
X
4
X
v

x X

Cloud-Native

Custom SQL Queries

Community and Open Development
Data Governance

AI/ML Integrations

Offline Mode

X v

XUUXCUNUUX CNUNN % %
X% UX NN NNN % NN %
RN N N N N NN
NN N N N S R N NN

/= Supported; X= Not Supported;

Table 2: Feature Comparison of DAVi

Feature DAVi | Apache Superset

Open Source BI

Tableau / Power BI

Dataiku
Universal Al Platform

Domo Alteryx

Proprietary BI Software Al & Data Platform Analytics Automation Platform

Interactive Dashboards

No-Code / Drag & Drop Chart Builder
Advanced SQL IDE (SQL Lab)

Wide Variety of Native Chart Types
Ability to Embed Dashboards

Integrated Jupyter/Python Environments
Isolated, On-Demand Environments
Visual / Low-Code Workflow Builder
Version Control

Open-Source Core Technology

API for Programmatic Control
Centralized LDAP Authentication

User Onboarding Workflow

Granular RBAC

Session Management

Real-time User/Code-to-User Notifications
Issue Tracking

Resource Monitoring

Automated Container Backups/Snapshots

X N NSNS

}:é O} ;} ;X N X NN X X X X NN NS

N 6 % b b b b < N

4 4
v v

AN

v

X X X X X N X NN X% x

> X% N XA XN\ %N AN
* X X X X > NN X N\ ¥ X% >

> NEXAUX NI S

V= Supported; X= Not Supported; %= Distinctive Feature; /= Limited Support.

analysis settings. However, the sandboxes still need to ingest data
and send out alert notifications resulting in the requirement of
a single ingress point to accept data and a single egress point to
send notifications outside, while maintaining high-grade isolation.
Thus, the container is prohibited from accessing the internet or
performing activities such as network scanning, DNS resolution,
and accessing elevated privileges, and is only allowed to access
the least capable vectors in the file system. This custom isolation
setting was achieved at different levels.

(1) A custom bridge was created with specific settings per user
to serve as a middleware between Jupyter compute and the
worker Docker system.

(2) The Jupyter Docker was configured to be launched with
specific settings (no port publishing, least privileges, non-
sudo access, limited file system privileges, etc).

(3) Firewall rules were applied so that only the Nginx of the
worker is allowed to hit the IP of each user’s Jupyter contain-
ers, one ingress port and one egress port being whitelisted
for that custom bridge subnet. This was done to enable DAVi
notifications and data transfer to operate.

(4) Proper Nginx configurations such as proxy were enabled
from master to worker and then worker to Jupyter IP.

Firewall Conflict. The stringent security requirements created a
conflict between firewall rules (IP tables and docker chains) meant

DAVi: Developing Data Analytics and Visualization Platforms

ISEC °26, February 19-21, 2026, Jaipur, India

. Core
! DATA STORES
ﬁ e pETSist te emetry_) . flow
subscribe D user
Consumer =3 notification
flow
ﬁ telemetry events Kafka MySQL Postgres
Broker v > Broadcast
analytics data notification
Producer
4
[
MASTER NODE | 15unch/relay Jupyter
[~ snapshotreq User data, L <
write session read/write N container, S
session <€ lifecycle
dashboard NGINX snapshot Jupyter
S embedding_)wi—' RS Supervjsor
p
user-1 Superset S
Application Backend API Backup service start/stop
API auth/roles per-user
authenticate !
r user _). S >
user authentication - = @
req/res| Y. req / res Backend LDAP LDAP 1 ~
<€ i_ > 5 Service Restic snapshots|
B [— session read i
user-2 7 message library
e e) (audited, signed token) L
NGINX socket events = S T B T | e N
I S—| S events > [PER-USER JUPYTER CONTAINERS |
5 (pub/sub) i
ocket Gateway Redis gwe, P o o ?
I service session a8 9
miss] [
logging S @ | - Redmine +| User-1 User-2 User-3 |-
user-3 req / res R . |Container| |Container| |Container| -
Logger service Log file MySQL | |

Figure 1: DAVi Architecture. A master-worker node separation enforces an additional barrier between sandboxed containers
and the core utilities of the platform. The Superset/Kafka subsystem is integrated in a modular fashion. Notifications may
originate from admin action or (more commonly) from user code running in a sandboxed container. The numbered arrows in
the diagram depict the flow of notifications that can be sent to a specific user or be broadcasted to a specific subset of users.

for containers hosting the sandboxes (that required stricter rules)
and containers hosting other critical system components such as
Superset, Redis, etc (that demanded relaxed rules). To resolve this
conflict, a two-plane master-worker configuration was adapted.
This choice offered the added advantage of further isolating com-
pute nodes from the rest of the system and improving contagion
confinement.

Secure Backups at Scale. The straightforward solution of archiving
and de-archiving the entire per-user volume is simple but makes
every snapshot and restore proportional to the total volume size,
regardless of the diff size. This may saturate the host I/O due to
minute-level scheduling and large user assets. This was addressed
by replacing tar-based backups with Restic [4] that offers content-
defined chunking and de-duplication to reduce snapshot costs to
roughly the size of the diff, enabling fast backups even for large
volumes. As a result, snapshot and restore latency decreased sub-
stantially and repository growth aligned with true data churn. In
addition, all snapshots are encrypted, and policy-based retention
simplifies pruning and lowers operational overhead.

Compute IDE.. A design choice had to be made when crafting the
compute environment. Various options were available such as the
easy-to-integrate web-based Monaco editor with a Python LSP
server for auto-completion, and the feature-rich, but harder-to-
integrate, JupyterLab dev environment. DAVi opted for the latter
and resolved integration issues via dockerization.

Issue Resolution. A choice was presented between two popular so-
lutions: Trac and Redmine. Trac is simpler to use but has no default
support for LDAP and no official Docker image while Redmine
has a steeper learning curve. DAVi settled for the latter given the
emphasis on security and long-term maintenance.

Tamper-proof Logs. The security considerations of the client de-
manded tamper-proof access and click logs. Various solutions in-
cluding blockchain and simple encryption were considered. How-
ever, since logs are rarely accessed, there was little need for the
heavy machinery of blockchain that would have introduced queu-
ing and consensus delays, risking log modification before commit.

ISEC °26, February 19-21, 2026, Jaipur, India

Instead, DAVi opted for encrypted, append-only logs that offer near-
instant commits, lower latency, lower overheads and a similar level
of security if implemented using strong PKI protocols.

Lack of Documentation. A significant hurdle faced during develop-
ment was the lack of proper documentation for LDAP integration
with Superset and Trac, and Superset by itself more generally. A sep-
arate project is being initiated to create helpful user and developer
manuals for these services individually and their integration.

4.2 Overall Architecture

All external traffic enters through an Nginx reverse proxy. Requests
are forwarded to the backend API (for REST/HTTP calls) or the
socket gateway (for real-time communication). Authentication is
LDAP-backed, with Redis and MySQL maintaining session state
and actively logging all user activity. Apache Superset provides
governed dashboards, Redmine provides Ticket management and
Jupyter containers enable interactive compute. Kafka serves as a
proof-of-concept streaming bus, bridging external telemetry into
SQL databases. Figure 1 summarizes the overall system.

4.3 Master—-Worker Compute Plane

DAVi employs as a two-plane system with distinct responsibilities.

Master node (control & services). This node hosts user-facing and
control-plane services such as Nginx (public ingress), Backend API,
Backend LDAP, Socket gateway, Logger, Redis, MySQL and Super-
set/Postgres. The master Nginx is the only public-facing entry point
and enforces TLS and rate-limiting policies while proxying to the
backend and socket services.

Worker node (secure compute). This node is dedicated to launching
and supervising user-scoped Jupyter containers. A separate worker-
side Nginx fronts only minimal endpoints needed for container life-
cycle and controlled messaging. This step further bolsters sandbox
security. Compute requests are validated on the master and relayed
to the worker, which then launches an isolated container bound
to the requesting user. The container may keep executing its code
(and also keep generating notifications to be broadcasted) even
if the associated user logs off. However, the system ensures that
containers are never orphaned. Upon logging back in again, the user
is immediately directed to their associated container to continue
their code development and system monitoring work.

Master—worker integration. The planes communicate through au-
thenticated internal APIs. The master issues short-lived signed
tokens that the worker verifies before honoring lifecycle or mes-
sage calls, thus confining blast radius: even if a container faces
runaway code or even if it is compromised by malware or other
contagion, impact is limited to that container on the worker plane
alone. An admin may then terminate that container. The backup
service (discussed later) can be used to restore user workspace data
to a timestamp deemed to precede the contagion or bug.

4.4 Frontend: React Interface

The frontend is built with Vite (React), providing multiple compo-
nents for user interaction:

Agrawal et al

Login & Navigation: Authenticates users against the LDAP service,
payloading JWT (stored in HttpOnly, SameSite cookie) for subse-
quent requests.

CSV Uploader: A dedicated component allowing bulk manual on-
boarding of new users. Uploaded CSV files contain id, name, email,
password, and role, which are transmitted to the backend for
LDAP integration.

Dashboard : Superset dashboards are embedded within the DAVi
UL, authorized via Superset guest tokens.

Admin Assistant: A rudimentary recommendation agent suggests
role names during policy creation, easing administrative overhead.

Session Manager. : Users can review all their active sessions across
different devices and browsers and have the ability to remotely
revoke any session they do not recognize.

Admin-specific Components. : Admin has privileges to add users,
create new roles and assign them to existing users, access the control
panel, view click and access logs, fetch new onboarding requests
and messaging components.

4.5 Backend API

The backend is implemented in Node.js/Express, providing end-
points for authorization, user management, data requests, and noti-
fication delivery.

Session Management: Redis serves as the store of ground truth
for active sessions. Keyspace notifications publish expiration events,
which propagate to the socket gateway for forced disconnection.
Superset Integration: The backend provides routes for access
token retrieval, refresh tokens, and guest token issuance, ensuring
seamless embedding of dashboards and charts.

CSV Upload: Uploaded CSV files are parsed, LDIF entries generated
and applied to the LDAP directory in the containerized openldap.
Notification APIs: Secure endpoints allow trusted backends to
inject messages into the socket service. Messages persist in MySQL
for offline delivery to users who are currently not logged in.
Jupyter Control: The backend validates JWTs and sessions before
launching Jupyter containers on worker nodes, enforcing strict
user-container binding.

Jupyter lifecycle and routing: The backend exposes a
/api/launch-jupyter control path that validates the user’s web
JWT and active session, then relays an authenticated request to the
worker to start the user’s container. The public route
/jupyter/{username}/. .. is terminated at the master Nginx, which
calls /auth/validate-token then proxies to the worker Nginx for
that user’s container.

4.6 LDAP Service

The LDAP subsystem governs identity and role assignments. Users
are imported via CSV, with LDIF scripts mapping them into

superset_user or superset_admin groups (extendable to multi-
ple groups). The LDAP authentication endpoint verifies user cre-
dentials for DAVi, issues JWTs signed on user-name and user-roles.
Sessions are mirrored in MySQL for auditability, with Redis acting

DAVi: Developing Data Analytics and Visualization Platforms

as the live store for expiration and invalidation. LDAP based au-
thentication is done for general access to DAVi, but repeated when
accessing the Superset and Redmine services.

4.7 Socket Gateway

Real-time interactions are managed by a Socket.IO service:

Authentication: Each socket connection is validated against JWTs
or backend-issued tokens. Session IDs are mapped to socket IDs.

Notifications: Admin users may broadcast system-wide messages,
target individuals, or message groups. Offline delivery is guaranteed
by saving messages to MySQL.

Session Deactivation: Users may deactivate remote sessions; expired
sessions trigger forced logout events through Redis pub/sub.

Integration: A Python WebSocket server can send JSON messages
into the gateway, demonstrating extensibility to external services.

4.8 Superset

Dockerised Superset with modified configuration as per our re-
quirements has been used.

LDAP-Integrated Authentication: User credentials are validated di-
rectly against the enterprise LDAP directory replacing the default
Superset authentication mechanism ensuring a centralized and
secure identity management.

Headless Integration: Due to Superset’s authentication workflow,
users may occasionally be required to re-authenticate themselves if
they want to create a new dashboard directly using the DAVi inter-
face. This happens only if Superset’s own session cookie has either
not been created yet (e.g., first-time login) or else has been cleared
for some other reason. Other actions such as listing and viewing of
existing dashboards, and even admin actions, are seamless and do
not require re-authentication.

4.9 User Activity Logging Service

For compliance and auditing, this service listens for events from
across the front-end and records them in an encrypted log store.

Client-side: only the action code and minimal relevant details are
transmitted.

Server-side: the username is extracted by decoding the JWT, and
the timestamp is generated, preventing client-side tampering. Each
action code undergoes a server-side sanity check before being com-
mitted to the log, minimizing the risk that forged or invalid actions
are recorded.

Encrypted Storage: Logs are stored in encrypted form using RSA
public—private key encryption, ensuring that only authorized par-
ties with the private key can decrypt and review activity records.

4.10 Backup Service

To protect user workspaces and enable point-in-time recovery, DAVi
includes a dedicated Backup service that provides automated, per-
user, volume-level snapshots with secure, space-efficient retention.

ISEC °26, February 19-21, 2026, Jaipur, India

The service runs on the worker plane alongside the Jupyter Super-
visor (Figure 1), ensuring close integration with user containers
while keeping repository access off the public ingress.

Scheduling & retention. A cron task performs automated backups
every minute for any running container volume. The backups are
pruned using a retention policy that keeps one snapshot every
minute within the last hour, one per hour for 24 hours, one per
day for 7 days, one per week for 4 weeks, and one per month for
12 months. This setup achieves the “Automated Container Back-
ups/Snapshots” capability as outlined in Table 2.

Security & efficiency. Restic [4] provides encryption at rest for all
snapshots and content-defined chunking/de-duplication, which
reduces storage for repeated notebook assets and improves the
speed of incremental backups. To further strengthen the security of
workspace snapshots, the Backup Service is executed under a dedi-
cated non-root Linux user, ensuring that Restic repositories and cre-
dentials remain inaccessible to Jupyter containers even in the event
of sandbox compromise. Moreover, restore operations require the
full 64-character snapshot hash and are additionally constrained by
user-specific tags, limiting both accidental and malicious cross-user
recovery attempts. Together, these measures provide strong prac-
tical isolation by combining strict privilege separation, protected
repository ownership, and rigorous snapshot validation, thereby
significantly reducing the risk of unauthorized access to backup
data.

4.11 Kafka Streaming Subsystem

To demonstrate data stream ingestion, DAVi includes a Kafka-based
proof of concept:

Producer: A Python producer emits telemetry events (like device_id,
timestamp, cpu, memory, temperature) to telemetry_topic.

Consumer: A Python consumer subscribes to the topic, persisting
records into a MySQL timeseries schema.

Visualization: Persisted database can be queried through Superset
dashboards with RBAC, and authorized users may export results to
Jupyter environment for analysis.

4.12 Operations and Administration

Three platform features support resilience and governance:

Snapshot-based backups. Regular snapshots capture MySQL/Redis
state, LDAP directory data, Superset configuration and per-user
Jupyter volumes via a Restic-based Backup service, enabling rapid
restoration after failures and safe environment promotion.

Security & efficiency. Restic provides encryption at rest for all snap-
shots and content-defined chunking/de-duplication reducing stor-
age for repeated notebook assets and accelerates backups.

Issue tracking with Redmine. Administrative request workflows are
integrated with Redmine for ticketing, release notes, and audit trails.
The user console links directly to Redmine, aligning operational
actions with recorded change history.

Encrypted Activity Logging. : Significant user actions are captured
by the Activity Logger service. The logs are encrypted using an RSA

ISEC °26, February 19-21, 2026, Jaipur, India

oo Ji

= o Y e T T oo |
© s

access Contol

WELCOME TO DAVI

Hallo, admin

Role: Adrmin, Alpha

(a) Homepage — portions of the image redacted to preserve
anonymity

Overview

(c) Redmine Issue Tracker — allows users to raise issues to the
admin for remedial action

WELCOME TO DAVI
Helo,adrmin

Role:Admin, Apha

(e) A sample Notification generated by user code presented in
Fig 2(g) - portions of the image redacted to preserve anonymity

o

1o m e TR

(g) JupyterLab Environment — allows users to write custom
code inside a sandboxed environment that can generate notifi-
cations and broadcast them to multiple users

Agrawal et al

- Py - G m— T]

World Bank's Data

==

Most opuisted Counties

Works's Popuiation P

7.24B

+12.9% over 10Y

\
= =
(b) View Dashboard
= om Y- PET—. T |
User Activity Log Viewer
— — o

masorar w VEW_DASHBOARDS

Uriosd Privat Key (PEM)
hooss P etk s

(d) Activity Logger — allows admins to securely inspect activity
and click logs to monitor user activity

e

= oav Y - B3

[

ez sorsamm

(f) Session Manager — allows users to inspect sessions under
their login and terminate inactive, suspicious sessions

Y . - e

Access Control Dashboard

W
H

(h) Access Control Panel - allows admins to add new users and
assign one or more roles to them

Figure 2: Screenshots of the DAVi platform

DAVi: Developing Data Analytics and Visualization Platforms

key pair before being stored in an append-only file store, ensuring
that their contents are protected at rest and can only be accessed
by authorized personnel holding the corresponding private key.

4.13 Security Model
DAVi enforces a multi-layered security model:

o All ingress is routed via Nginx with TLS and rate limiting.

e Session expiration is enforced consistently across backend,
socket, and frontend.

o APIs requiring cross-service integration (e.g., notifications)
mandate a backend-shared secret.

o Fine-grained route permissions are defined and filtered per-
role by the backend before rendering routes to clients.

e Database RBAC and RLS are provided by Superset.

Password and Token Handling Security. OpenLDAP ensures
secure credential handling. As all communication will occur over
HTTPS, the current design provides strong protection against token
leakage, passwords are stored in LDAP only as salted hashes, and
cleartext passwords exist only in LDAP’s memory during verifica-
tion. For Superset integration, refresh tokens are never stored, only
short-lived access tokens are stored asHt tpOnly, SameSite=Strict
cookies. A controller-proxy microservice for managing Superset
tokens was considered but rejected, as it would add complexity and
latency without much meaningful security benefit.

4.14 Secure Compute and Container Isolation

Given the stringent security requirements, all user code being run
inside worker containers is treated as high risk and confined to the
worker plane:

Per-user custom bridge: Each container is bound to a user-specific
route (/jupyter/{username}/...) and is addressed only through
that bridge.

Ingress mediation via Nginx: Only the master Nginx is allowed
to communicate with the container’s direct IP. It intercepts the
request, validates the token, and forwards it to the worker Nginx.
Firewall rules: Direct container IP traffic is blocked by default; only
whitelisted ports are open to the worker Nginx. Master services are
unreachable from within containers.

Single egress path (message library): Containers cannot contact
internal services directly; the only sanctioned outward path is a
message library endpoint that accepts a signed, short-lived token.
Messages are validated, rate-limited, and audited before fan-out.
Blast-radius control: In the worst case, say malicious code be-
ing executed within a container, the sandboxing ensures that the
contagion does not spread and can at worst crash the container
itself, leaving other services (auth, sessions, dashboards, messaging)
unaffected by design.

Load Balancing: A container that consumes more than the allot-
ted resources (upto a grace period) gets terminated automatically.
The owner must make a fresh compute request to spin up a new
container. A user has at most a single container associated with
them at any point of time.

5 User Interface and User Experience

DAVi emphasizes clarity, progressive disclosure of capabilities, and
security-by-default. This section describes the main interaction

ISEC °26, February 19-21, 2026, Jaipur, India

flows, the rationale for key UX decisions, and how the frontend
collaborates with the backend to provide responsive feedback under
strict governance. An overview of the Ul is shown in Fig. 2.

5.1 Login and Session Posture

Upon visiting the DAVi portal, the user is greeted with a minimal
login screen. Credentials are validated against the LDAP directory
and on success, a short-lived JWT token and a server session are
established. The session posture is shown on the user interface
(e.g., “Last access”, “Devices”, “IP”) to make account activity visible,
and the user can terminate other active sessions from within the
account menu. If a session expires or is deactivated elsewhere, the
Ul receives a real-time logout signal and returns the user to the
login screen with a concise explanation.

5.2 Role-Aware Navigation

After login, navigation and feature visibility are dynamically tai-
lored to the user’s role(s). Administrators see onboarding, routing-
policy, and audit views; standard users see dashboards, notifications,
and compute requests. The left-hand navigation lists only those
routes authorized by policy; unauthorized routes are omitted rather
than disabled to reduce confusion and minimize information dis-
closure. Any kind of unauthorized route access attempt is logged.

5.3 Dashboards and Embedded Analytics

Dashboards are embedded directly within the DAVi platform. Users
can switch between curated dashboards (e.g., operational telemetry,
request status, and resource usage). The embedding experience
avoids re-login prompts and provides a consistent session lifetime
with the web application. However, if a user wants to create a new
dashboard, he will be prompted to Login to Superset inside the
embedded iframe as the dashboard creation function of Superset
does not rely on guest-token based mechanism as the case with
just viewing the dashboards.

5.4 Bulk User Onboarding

DAVi supports two onboarding modes. Administrators may perform
abulk upload by submitting a CSV file with header id, name, email
password, role. The Ul previews the parsed table for validation
before processing, finally displaying outcomes of LDAP updates.
Alternatively, a manual entry form allows adding a single user;
the system internally converts the entry into a one-line CSV and
routes it through the same onboarding pipeline.

5.5 Notifications and Real-Time Feedback
The shell maintains a real-time connection for system notifications:

e Admin broadcast: Administrators can send a message to all
users (e.g., maintenance windows, policy changes). Online
users receive a live toast; offline users see the message upon
next login.

o Targeted messaging: Authorized operators can message
a specific user or a named group (e.g., a distribution list).
Delivery status and any denials are shown inline.

e Compute to Frontend: Push notifications can be unicas-
ted or broadcasted from compute environments upon some

ISEC °26, February 19-21, 2026, Jaipur, India

trigger to the DAVi frontend and can be further extended to
Push notification service.

A badge counter surfaces unread notifications. Users can mark all
as read; the count and list synchronize with the server.

5.6 Real-Time Session Governance

If a user deactivates one of their other active sessions, the UI for that
device receives a real-time “force sign-out” event. The experience
is designed to be explicit but unobtrusive: an interstitial explains
the reason for deactivation, provides a link back to the login screen,
and offers an “Appeal/Report” affordance when enabled by policy.

5.7 From Dashboards to Compute

Some workflows require data extraction into a notebook environ-
ment for exploratory analysis. The interface provides an easily iden-
tifiable button titled "Run JupyterLab" that can be used to request
compute. The request is authorized with the same user identity
and roles. On approval, the DAVi UI surfaces connection details
and a short-lived message token for the user’s container. System
status and basic resource metrics (e.g., CPU, memory) are periodi-
cally polled and displayed; if the container is idle or exceeds limits
(upto a grace period), the Ul communicates impending shutdown
windows and preserves session state for resumption.

5.8 Error Handling and Resilience Cues

Across flows, the Ul emphasizes clear, actionable errors:

e Authentication errors: concise cause (invalid credentials,
expired session) with guidance to retry.

e Policy denials: specific reason (insufficient role, missing
approval) and a one-click access request where applicable.

o Upload failures: validation feedback for bulk onboarding.

e Redmine: Other requests that require admin intervention
can be raised as a ticket on Redmine.

Transient network issues trigger non-blocking banners and auto-
matic retry when safe. Superset, Ngnix and DAVi’s logging mecha-
nism records all such events.

5.9 Performance metrics

As DAVi is developed for sensitive applications, the system is evalu-
ated through qualitative, architecture-driven, non-sensitive metrics
derived from controlled synthetic tests providing a structured and
defensible assessment of DAVi ’s operational profile in Table 3.

5.10 Administrator Experience

Administrators have a unified console for:

e reviewing new onboarding requests for approval,

e managing access control like new role creation, user role
change, role-to-route mapping, manage database access etc.

¢ auditing notifications, session and logging activity

e assessing container health signals relevant to end users.

Design intentionally separates policy authoring from operational
messaging to reduce accidental misconfiguration and support clearer
accountability.

Agrawal et al

Table 3: Qualitative Performance Metrics

Metric Description

Sandbox Startup Latency Time from Launch Request to Jupyter Readiness; indicates isola-
tion overhead and responsiveness.

Restic snapshot time and delta size; shows storage efficiency and
snapshot scalability.

Time to Restore a User Volume Snapshot; Confirms Recovery

Backup Creation Latency

Backup Restore Latency

Reliability.
Notification Delivery Latency Time from Container Message to Frontend Receipt; Verifies Real-
Time Alerting.
Dashboard Embedding Over- Superset dashboard load time; measures Ul embedding and Su-
head perset-NGINX-token integration efficiency.

Backend + Superset RBAC evaluation time; reflects governance
accuracy and authorization overhead.

Propagation Time for Session Expiration/Forced Logout; Checks
Revocation Behavior.

CPU-heavy stress tests; evaluates sandbox robustness and auto-
kill triggers.

Synthetic Events/sec Persisted; Validates Streaming Ingestion
Performance.

Control-plane API Turnaround Time: Shows backend responsive-
ness.

Access Authorization Time
Session Governance Latency
Compute Resource Stability
Kafka-to-MySQL Throughput

API Response Latency

6 Conclusion and Future Directions

DAVi is a secure compute—-visualization platform addressing client
requirements such as stringent security, scalability and legacy inte-
gration, allowing users to move fluidly between high-level monitor-
ing on an interactive dashboard to programmatic anomaly investi-
gation within a secure, unified web application. DAVi provides a
modular framework to build other integrated data visualization and
analytics platforms, by providing a blueprint for similar systems
in other data-intensive scientific and industrial domains. The plat-
form effectively empowers its users with a powerful, secure, and
unified environment, enabling them to transform vast streams of
complex operational data into the actionable intelligence necessary
for operational success.

Future directions of work include integrating user-friendly tools
such as allowing natural language queries via LLM integration,
comprehensive failure-mode and reliability testing and creation of
a marketplace of code snippets and workflows allowing scientists
and analysts within the same org to share code and data flows.
The platform is fully integrated and currently deployed as a pilot
within a controlled, high-security environment. Although core fea-
tures are fully functional and the platform enforces strong isolation
and governance, residual risks inherent to containerized compute
such as potential replay attacks, impersonation risks in service
communication, and container-escape vectors, remain subject to
ongoing mitigation. Several enhancements, such as mTLS-based
inter-service authentication, SBOM generation, stricter container
profiles, and formal penetration testing are part of the platform’s
planned hardening phase before production roll-out.

Acknowledgments

This work was supported by a grant from the Indian Space Re-
search Organization via the IIT Kanpur Space Technology Cell
project number STC/CS/2023664Q. The authors thank the Center
for Developing Intelligent Systems, especially Mr. Harikrishna P,
and Mr. Manish Kumar for helpful consultations. PK thanks Mi-
crosoft Research and Tower Research for research grants.

References

[1] Redmine 2006. Redmine: A Project Management Web Application. Redmine.
https://www.redmine.org

https://www.redmine.org

DAVi: Developing Data Analytics and Visualization Platforms

[10

(1

[12

[13

[14

[15

]

]

]

Domo, Inc. 2011. Domo: The Modern Al and Data Products Platform. Domo, Inc.
https://www.domo.com/

Dataiku 2014. Dataiku: The Universal Al Platform. Dataiku. https://www.dataiku.
com/

restic 2014. restic: Backups done right! restic. https://restic.net

The Apache Software Foundation 2021. Apache Superset. The Apache Software
Foundation. https://superset.apache.org/

Preset, Inc. 2022. Preset: Modern BI Powered by Open Source Apache Superset.
Preset, Inc. https://preset.io/

Dropbox Tech Blog. 2020. Why we chose Apache Superset as our data exploration
platform. https://dropbox.tech/application/why-we-chose-apache-superset-as-
our-data-exploration-platform.

R. Bovkir and A. C. Aydinoglu. 2021. Big Urban Data Visualization Approaches
Within The Smart City: Gis-based Open-source Dashboard Example. The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences Xlvi-4/w5-2021 (2021), 125-130. doi:10.5194/isprs-archives-XLVI-4-W5-
2021-125-2021

Open edX. 2023. Open edX Aspects: Superset Decision Record.
https://docs.openedx.org/projects/openedx-aspects/en/open-release-
palm.master/decisions/0003_superset.html.

Funda.nl Engineering. 2020. How We Decided on Using Apache Superset for
Embedded Analytics. https://blog.funda.nl/how-we-decided-on-using-apache-
superset-for-embedded-analytics/.

Apache Software Foundation. 2021. The Apache Software Foundation Announces
Apache Superset as a Top-Level Project. https://news.apache.org/foundation/
entry/the-apache-software-foundation-announces70.

Javier Franco, Ahmet Aris, Berk Canberk, and A. Selcuk Uluagac. 2021. A Survey
of Honeypots and Honeynets for Internet of Things, Industrial Internet of Things,
and Cyber-Physical Systems. IEEE Communications Surveys & Tutorials 23, 4
(2021), 2351-2383. do0i:10.1109/comst.2021.3106669

Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: a Distributed Messaging
System for Log Processing. Proceedings of the NetDB Conference (2011).

Jinging Lian, Xinyi Liu, Yingxia Shao, Yang Dong, Ming Wang, Zhang Wei, Tianqi
Wan, Ming Dong, and Hailin Yan. 2024. ChatBI: Towards Natural Language to
Complex Business Intelligence SQL. arXiv:2405.00527 [cs.DB] https://arxiv.org/
abs/2405.00527

David McVicar, Brian Avant, Adrian Gould, Diego Torrejon, Charles Della Porta,
and Ryan Mukherjee. 2023. Smartflow: Enabling Scalable Spatiotemporal Geospa-
tial Research. In IGARSS 2023 - 2023 IEEE International Geoscience and Remote

[16

(17

oy
&

[19

[20

[21

[22

&
&

[24

[25

[26

[27]

ISEC °26, February 19-21, 2026, Jaipur, India

Sensing Symposium. leee, 1193-1196. doi:10.1109/igarss52108.2023.10283095
Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux Journal (May 2014).
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-
consistent-development-and-deployment

Petito Michele, Francesca Fallucchi, and Ernesto William De Luca. 2019. Create
Dashboards and Data Story with the Data & Analytics Frameworks. In Metadata
and Semantic Research, Emmanouel Garoufallou, Francesca Fallucchi, and Ernesto
William De Luca (Eds.). Springer International Publishing, Cham, 272-283. https:
//link.springer.com/chapter/10.1007/978-3-030-36599-8%5F24

Ameir El Ouadi, William Knowlton, Adrian Pimentel, and David Beskow. 2025.
Gaining the Edge: Visualizing Information Advantage through Machine Learning-
Driven Dashboards. In Proceedings of the Annual General Donald R. Keith Memorial
ConferenceWest Point, A Regional Conference of the Society for Industrial and Sys-
tems Engineering, New York, USA April 24, 2025. https://www.ieworldconference.
org/content/WP2025/Papers/ GDRKMCC25%5F11.pdf

Fernando Pérez and Brian Granger. 2014. IPython: A System for Interactive
Scientific Computing. In Proceedings of the 13th Python in Science Conference.
Preset.io. 2020. Nielsen uses Apache Superset for scalable analytics. https:
//preset.io/blog/2020-08-11-nielsen-superset/.

Preset.io. 2021. How the Bing Team Heavily Customized Superset for their
Internal Data Platform. https://preset.io/events/how-the-bing-team-heavily-
customized-superset-for-their-internal-data/.

Guillermo Rauch. 2012. Socket.IO: Real-time Bidirectional Event-based Commu-
nication. Open Source Project (2012). https://socket.io/

Guilherme H. Soares and Miguel A. Brito. 2023. Business Intelligence Over and
Above Apache Superset. In 2023 18th Iberian Conference on Information Systems
and Technologies (CISTI). doi:10.23919/cisti58278.2023.10211907

SolDevelo. 2021. How to Set Up Superset: Case Study Based on the TransIT
Project. https://soldevelo.com/blog/how-to-set-up-superset-case-study-based-
on-the-transit-project/.

Apache Superset. 2025. In the Wild: Organizations Using Superset. https://github.
com/apache/superset/blob/master/RESOURCES/INTHEWILD.md.

Igor Sysoev. 2004. NGINX: High Performance Load Balancer, Web Server, and
Reverse Proxy. Open Source Project (2004). https://nginx.org/

M. Wahl, T. Howes, and S. Kille. 1995. Lightweight Directory Access Protocol
(LDAP). In Rfc 1777. https://www.rfc-editor.org/rfc/rfc1777

https://www.domo.com/
https://www.dataiku.com/
https://www.dataiku.com/
https://restic.net
https://superset.apache.org/
https://preset.io/
https://dropbox.tech/application/why-we-chose-apache-superset-as-our-data-exploration-platform
https://dropbox.tech/application/why-we-chose-apache-superset-as-our-data-exploration-platform
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-125-2021
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-125-2021
https://docs.openedx.org/projects/openedx-aspects/en/open-release-palm.master/decisions/0003_superset.html
https://docs.openedx.org/projects/openedx-aspects/en/open-release-palm.master/decisions/0003_superset.html
https://blog.funda.nl/how-we-decided-on-using-apache-superset-for-embedded-analytics/
https://blog.funda.nl/how-we-decided-on-using-apache-superset-for-embedded-analytics/
https://news.apache.org/foundation/entry/the-apache-software-foundation-announces70
https://news.apache.org/foundation/entry/the-apache-software-foundation-announces70
https://doi.org/10.1109/comst.2021.3106669
https://arxiv.org/abs/2405.00527
https://arxiv.org/abs/2405.00527
https://arxiv.org/abs/2405.00527
https://doi.org/10.1109/igarss52108.2023.10283095
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://link.springer.com/chapter/10.1007/978-3-030-36599-8%5F24
https://link.springer.com/chapter/10.1007/978-3-030-36599-8%5F24
https://www.ieworldconference.org/content/WP2025/Papers/GDRKMCC25%5F11.pdf
https://www.ieworldconference.org/content/WP2025/Papers/GDRKMCC25%5F11.pdf
https://preset.io/blog/2020-08-11-nielsen-superset/
https://preset.io/blog/2020-08-11-nielsen-superset/
https://preset.io/events/how-the-bing-team-heavily-customized-superset-for-their-internal-data/
https://preset.io/events/how-the-bing-team-heavily-customized-superset-for-their-internal-data/
https://socket.io/
https://doi.org/10.23919/cisti58278.2023.10211907
https://soldevelo.com/blog/how-to-set-up-superset-case-study-based-on-the-transit-project/
https://soldevelo.com/blog/how-to-set-up-superset-case-study-based-on-the-transit-project/
https://github.com/apache/superset/blob/master/RESOURCES/INTHEWILD.md
https://github.com/apache/superset/blob/master/RESOURCES/INTHEWILD.md
https://nginx.org/
https://www.rfc-editor.org/rfc/rfc1777

	Abstract
	1 Introduction
	2 Related Work
	3 Usage Scenarios and Design Considerations
	4 System Design and Implementation
	4.1 Technical Challenges
	4.2 Overall Architecture
	4.3 Master–Worker Compute Plane
	4.4 Frontend: React Interface
	4.5 Backend API
	4.6 LDAP Service
	4.7 Socket Gateway
	4.8 Superset
	4.9 User Activity Logging Service
	4.10 Backup Service
	4.11 Kafka Streaming Subsystem
	4.12 Operations and Administration
	4.13 Security Model
	4.14 Secure Compute and Container Isolation

	5 User Interface and User Experience
	5.1 Login and Session Posture
	5.2 Role-Aware Navigation
	5.3 Dashboards and Embedded Analytics
	5.4 Bulk User Onboarding
	5.5 Notifications and Real-Time Feedback
	5.6 Real-Time Session Governance
	5.7 From Dashboards to Compute
	5.8 Error Handling and Resilience Cues
	5.9 Performance metrics
	5.10 Administrator Experience

	6 Conclusion and Future Directions
	Acknowledgments
	References

