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Abstract. In the era of burgeoning data generation, managing large-
scale datasets poses significant challenges. With the rise of computing,
the volume of data produced has soared, intensifying storage and I/O
overheads. To address this issue, we propose a data summarization tech-
nique that identifies informative features in key timesteps and fuses less
informative ones. This approach minimizes storage requirements while
preserving data features. Unlike existing methods, our method retains
both raw and summarized timesteps. We utilize information-theoretic
measures to devise the fusion process, visually representing underly-
ing data patterns. We demonstrate the versatility of proposed technique
across datasets from diverse application domains.
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1 Introduction

In today’s data-driven world, the exponential growth in data generation has
brought forth significant challenges for storage and associated I/O overheads.
Modern computing capabilities have enabled the creation of massive datasets at
an accelerated pace [40, 16]. Many of these datasets exhibit a dynamic temporal
nature, spanning thousands of timesteps and needing large storage. Analyzing
such a large number of timesteps poses significant challenges. One popular ap-
proach is to summarize the data by identifying the key timesteps. However, while
key timestep-based approaches preserve the important events, automatic detec-
tion of key timesteps is non-trivial and the data dynamics for the intermediate
non-key timesteps are completely ignored. Therefore, to preserve the temporal
dynamics, only key timestep-based solutions may not be desired. We need novel
data summarization methods that preserve both key events and overall temporal
dynamics of the data in a storage-efficient compact format enabling accelerated
analytics on large time-varying data.

To address the aforementioned need, we propose a data summarization tech-
nique that aims to minimize the storage overhead while preserving the salient
temporal dynamics. We also emphasize visualizing these dynamics by tracking
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changes over time. Our approach involves a dynamic spatio-temporal summa-
rization (DSTS) technique, which adaptively identifies both key and redundant
timesteps. We store the key timesteps and summarize redundant timesteps into a
single timestep, highlighting the salient temporal characteristics of the features.
The summarization technique ensures storage reduction with minimal informa-
tion loss.

To achieve this, we use information-theoretic measures namely the Specific
Mutual Information to guide the data fusion for the summary generation. The
core idea of the summarization is to identify informative temporal features within
the redundant (non-key) timesteps and fuse them using principles from informa-
tion theory. By selecting the most relevant features from the redundant timesteps
and summarizing through information-guided fusion, we retain the temporal dy-
namics. This approach optimizes storage requirements and facilitates the visual-
ization and tracking of information change over time, providing valuable insights
about data patterns.

The contributions of the paper are:

– Develop a dynamic spatio-temporal summarization (DSTS) technique for
large-scale time-varying datasets. The summary provides three features: key
timesteps, fused timesteps, and holistic visual representation of information
change.

– Propose several information-theoretic fusion strategies and comprehensively
compare, contrast, and evaluate their characteristics and applicability in
summarizing the datasets.

– Demonstrate the flexibility and effectiveness of the proposed DSTS technique
through application to diverse time-varying datasets including scientific flow
simulations, surveillance video, and cell interactions in the immune system.

– Explore the impact of the proposed technique in optimizing data storage
with minimal data loss.

2 Related Works

In this work, we focus on identifying and storing informative key timesteps while
summarizing less informative (non-key) ones by fusion. Among data compression
and reduction techniques, Cinema [1] is an image-based in situ data reduction
and visualization approach. Lossless and lossy compression methods are also
applied for data reduction [54, 13]. Among other techniques, statistical methods
have been applied [58, 20, 61]. Unlike theseworks, we aim to retain information
from both raw and reduced timesteps to capture information changes over time.

There are numerous approaches [64, 38, 52] that have been proposed for iden-
tifying key timesteps. These studies focus on only capturing key timesteps. Other
studies focused solely on data reduction [2, 56]. Unlike these studies, our work
combines summarization with key timestep selection and data reduction.

Data fusion techniques [14] for large-scale spatio-temporal datasets has been
a popular field across various domains like remote sensing [32, 39],geoscience [59,
33], network architectures [29, 47], computer vision [24, 57, 60], and time-varying
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scientific data [22]. In computer vision, various data summarization strategies
have been explored, including Gaussian entropy fusion [25] and probabilistic
skimlets fusion [62]. Additionally, deep learning methods have also been applied
for summarization [63]. Unlike some existing techniques, our approach doesn’t
need training and can be readily applied to large-scale datasets. Moreover, it is
computationally efficient, rendering it applicable for both streaming and offline
data analysis.

Information theory [48, 18, 53] has been employed to measure the relation-
ships between variables in data across multiple computational domains [36, 44,
50]. Mutual information (MI) is extensively applied for feature selection, explo-
ration, extraction, and tracking [5, 51]. Image registration is another popular
application [34, 27, 11]. MI, as well as its decomposition measures like specific
mutual information and pointwise mutual information, have been widely used in
multi-modal data fusion [7], data analysis, and visualization [56, 21, 28, 6, 3, 15].
Other use cases include view selection [55], feature similarity [9], and transfer
function and design [43, 8].

3 Information-Driven Framework for Feature-Based
Temporal Data Summaries
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Fig. 1. Schematic diagram of our workflow. Standard computational flowchart [49]
symbols are used for representations: input/output, process, decision, and arrows indi-
cating relationships between symbols.
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3.1 Framework Workflow

Figure 1 illustrates the schematic of the proposed workflow. To demonstrate each
step of this workflow, we will refer to Figure 2, which serves as an illustrative
application of our method using a synthetic data set. In this application, we
simulate a rolling ball moving from left to right at each timestep until it exits
the view area.

Our proposed method is designed for time-varying data containing various
types of salient features. In Figure 2, the simulated rolling ball application con-
sisting of 19 timesteps (T0 - T18), shows the ball’s positional change over time.
Each timestep is represented as 800×400 pixel 2D RGB image. At timestep T0,
the frame is empty; the ball has not yet entered the view area. The ball enters
at T1 and changes position until T17; finally exiting the view area at T18. The
proposed method iteratively processes the sequence of input timesteps. After the
first timestep, for every subsequent timesteps, the key regions are extracted us-
ing a segmentation method proposed in [31]. Criteria for extraction of such key
regions is determined by the domain knowledge. In this case, the key feature is
the presence of the ball and its location. So we segment the region containing the
ball and create binary masked images shown in Figure 2 (masked row). These
images contain only two data values: 0 (no ball) and 255 (ball).

After extracting the key region, we check if a certain property is present in
that timestep. We denote this property as trigger which is a change in the key
region. The change can be in terms of count, size, shape, connectivity, space,
or association. In this rolling ball demonstration, the triggers are the first ap-
pearance and final exit of the ball from the view area. When the ball enters and
then exits the area, it is considered as salient information. But the time the ball
remains in the area, the only novel information is its change of position. If a
trigger is present in the current timestep, then it is considered as a key timestep.
Hence our method saves it as it is. If the trigger is not present, we proceed to the
next timestep, do a similar check, and continue the process until a trigger is en-
countered. These intermediate sequential timesteps that did not have the trigger
are chosen to be fused into a single timestep as the amount of novel information
within such a sequence is low. If the number of timesteps to be fused is one
then we can discard it as the previous timestep has the necessary information.
If the number is greater than one then we perform pairwise information-guided
fusion on these timesteps and convert them as one single timestep to be saved
as a temporal summary. Referencing the demonstration in Figure 2, T0 is saved.
Subsequently, for T1 through T17, no triggers are identified, and again, T18 is
saved. Therefore, T1 through T17 are fused as shown in figure 2(a) and (b). Note
that, since our method processes one timestep at a time incrementally as they
appear, it can be applied to applications where data is streamed for real-time
processing.

3.2 Characterization of Samplewise Information for Fusion

We use the term "sample" to refer to individual data points. Each timestep
contains multiple samples representing the values of the data. In the case of
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Fig. 2. Illustration using a simulated rolling ball with 19 timesteps (T0 -T18). At each
timestep, the ball moves 0.5 units to the right. Timesteps are 2D RGB images with
800×400 dimensions with data (pixel) values ranging between 0 to 255 (input row). The
masked row presents binary images with values 0 (no ball) and 255 (ball). T1 to T17
are fused using (a) Surprise (I1) guided fusion and (b) PMI guided fusion. a(i) shows
the I1 fused data value field (0 white and 255 red). a(ii) shows I1 fused information
value field. a(iii) displays I1 fused timestep summary with numbered color labels for
each timestep. The numbers indicate spatial information changes over time. Surprise
effectively captures spatio-temporal properties, whereas alternative PMI measure does
not perform well. (b) shows the scenario with the information field using PMI values.



6 H. Tasnim et al.

images like the rolling ball, these samples range from 0 to 255, while for other
types of data variables, they may be scalar values. Quantifying information for
these samples will help identify important spatial features for the timestep.

Mutual Inforamtion In information theory, Mutual Information (MI) [48] is
a prominent measure that estimates the total amount of shared information be-
tween two random variables. Given two random variables X and Y , MI I(X;Y )
is formally defined as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x) p(y)
(1)

where p(x) and p(y) are the probabilities of occurrence of values x for X and y
for Y respectively. p(x, y) is the joint probability of occurrence of values x and
y together. MI assesses the degree of association or disassociation between two
random variables and gives a single value. Since we aim to extract feature-based
data summaries, we need samplewise spatial and temporal information charac-
terization. Therefore, we leverage the decomposition of MI which quantifies each
data value’s contribution toward the association or dissociation. The decompo-
sition of MI is termed as Specific Mutual Information or SMI [19]. There are
multiple methods for MI decomposition [19, 10]. For apprehending the fusion
criteria essential for summarizing the data, the properties of the SMI measure,
Surprise holds the most potential.

SMI Measure Surprise The Surprise measure denoted as I1 was first intro-
duced by [19]. Surprise quantifies the information change of the target variable
after observing the individual scalar values of the reference variable. The deriva-
tion of Surprise from MI is as follows.

By definition, the conditional probability of x given y is:

p(x|y) = p(x, y)

p(y)
or p(x, y) = p(x|y) p(y) (2)

Replacing the joint probability in Equation 1, we get,

I(X;Y ) =
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y)
p(x)

=
∑
y∈Y

p(y) I1(y;X)
(3)

where,

I1(y;X) =
∑
x∈X

p(x|y) log p(x|y)
p(x)

(4)

Equation 4 represents the surprise measure of data value y from Y after observing
all the values of X. A high value for I1(y;X) means after observing y, some
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previously low probable values of x ∈ X have become highly probable. This
likelihood increase is the element of surprise and a salient finding for further
analysis. Surprise is also the only positive decomposition of MI since it is the
Kullback-Leibler distance between p(x|y) and p(x) [30].

3.3 Surprise (I1) Guided Fusion Technique

When the low informative timesteps are chosen, the fusion initiates for summa-
rization. The fusion is done on pairwise timesteps. For every pair of data samples
from the timesteps, we store samples with high I1 values. This fusion strategy
was introduced by [7] for fusing different datasets to gain the most informative
combination. The condition to compute the fused value using I1-fusion is:

For every data sample pair with (x, y), the fused value, f is,

f =

{
x, if I1(x;Y) > I1(y;X)

y, otherwise
(5)

Here x and y are individual data values from two data sets X and Y. Our fusion
criteria is based on the idea of Equation 5, however, instead of different datasets
we are using two subsequent timesteps from the same dataset. To fuse multiple
timesteps, we begin by creating a fused timestep using the first two timesteps.
Then, we repeat the fusion process by comparing the fused timestep with the next
timestep and continue until all desired timesteps have been fused. Our strategy
involves updating the fused timestep during each iteration and selecting the
spatial and temporal values with the highest information content. By the end
of the process, the resulting fused timestep will represent a summary capturing
their most informative properties with direction. The fusion process is described
in detail in Algorithm 1. After each fusion process, the algorithm provides 3 fused
fields as shown in 2(a). I1 fused data value field contains the values of the data
samples with high surprise measure. I1 fused information value field contains
the I1 values for the same sample positions. In the timestep summary fields, the
same data samples are labeled with their originating timestep numbers.

Applying the fusion process in Algorithm 1 on T1 - T17 of the simulated
rolling ball, the I1 fused data value field is generated highlighting the path of
the ball with values 255 as shown in Figure 2 a(i). The regions without the ball
are valued 0. Figure 2 a(ii) represents the fused information fields with I1 val-
ues. From the color bar’s gradient, we observe that the surprise values exhibit
limited variation, spanning approximately from 0 to 2. A minimal data value
range results in minimal surprise variation. Figure 2 a(iii) presents the timestep
summary where the numbers of originating timesteps are labeled for the salient
samples. Here, we employed distinct colors to label the timesteps, enabling clear
visualization and differentiation of each timestep. This color-coded represen-
tation shows the flow of information, facilitating the tracking of information
changes over time. Here, the confidence threshold is employed to downplay the
non-important regions. In this particular case, the threshold value is set to 255.
Any value below 255, representing the absence of the ball, is assigned as timestep



8 H. Tasnim et al.

0. In Figure 2 a(iii), these regions are depicted as white or transparent (steps 19 -
24 in Algorithm 1). The method reduces the number of output timesteps from 19
to 3 in the simulated rolling ball case, achieving substantial data reduction with
minimal loss. The fused timestep effectively visualizes the information changes
over time, serving as a summary of the original data dynamics.

3.4 Alternative Fusion Approaches

We also explore other potential information measures to devise alternative tech-
niques for generating data summaries. These information-theoretic measures in-
clude Pointwise Mutual Information (PMI) [17], SMI measures : Predictability
(I2) [19] and Stimulus Specific Information (I3) [10].

PMI Guided Fusion PMI [17] quantifies the degree of association (or disas-
sociation) between individual data points given two variables. If X and Y are
two variables, then each data point can be represented by the value pair (x, y)
where x ∈ X and y ∈ Y . The statistical association between these two points
can be measured by their PMI value:

PMI(x, y) = log
p(x, y)

p(x) p(y)
(6)

where p(x) and p(y) are the probabilities of occurrence of values x ∈ X and
y ∈ Y . p(x, y) is the joint probability of occurrence of values x and y together.
Comparing Equations 1 and 6, we can infer that the expected PMI values over
all occurrences of variables X and Y correspond to the MI value I(X;Y ). PMI is
a symmetric measure that can generate values ranging from negative to positive,
depending on whether the distributions are complementary or overlapping. If the
information overlap is high (p(x, y) > p(x) p(y) ), then PMI(x, y) > 0. The low
association is indicated by p(x, y) < p(x) p(y), resulting in PMI(x, y) < 0. If x
and y are statistically independent then p(x, y) = p(x) p(y) and PMI(x, y) = 0.

Given the PMI measure, we can devise a fusion strategy similar to I1 where
I1 values are substituted with PMI values in Algorithm 1. The resulting fused
information field on the simulated rolling ball is shown in Figure 2(b). We observe
that PMI fails to capture the spatial characteristics of the key regions and only
captures the overlapped regions indicated by high positive PMI values.

I2 Guided Fusion Predictability (I2) is another decomposition of MI intro-
duced by [19]. This SMI measure quantifies the change in the uncertainty of one
variable (X) after observing the individual value of another variable (y ∈ Y )
and is computed as:

I2(y;X) = −
∑
x∈X

p(x) log p(x) +
∑
x∈X

p(x|y) log p(x|y) (7)

where y ∈ Y is the reference variable and x ∈ X is the target variable. p(x)
is the probabilities of occurrence of values x for X and p(x|y) is the conditional
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Algorithm 1 Fusion Process
Input:

– data1: Array of data values from fused timestep. Initialized with the first timestep.
– data2: Array of data values from the subsequent timestep.
– Ifield1: Array of I1 values for I1(x;Y ) ∀x ∈ X
– Ifield2: Array of I1 values for I1(y;X) ∀y ∈ Y
– timestep_fuse: Array of timestep values. Starts with 0
– time: Current timestep value
– conf_th: Confidence threshold for the key regions.

Output:

– fused_field_data: Array of the fused data values
– fused_field_I1: Array of the fused I1 values
– timestep_fuse: Array of the fused timestep values.

1: procedure createFusionFields(data1, data2, Ifield1, Ifield2, timestep_fuse,
time, conf_th)

2: fused_field_data← array of zeros with shape data1
3: fused_field_I1← array of zeros with shape data1
4: for i← 0 to data1.shape[0]− 1 do
5: for j ← 0 to data1.shape[1]− 1 do
6: if Ifield1[i][j] > Ifield2[i][j] then
7: fused_field_data[i][j]← data1[i][j]
8: fused_field_I1[i][j]← Ifield1[i][j]
9: if time = 1 then

10: timestep_fuse[i][j]← time
11: end if
12: else
13: fused_field_data[i][j]← data2[i][j]
14: fused_field_I1[i][j]← Ifield2[i][j]
15: timestep_fuse[i][j]← time + 1
16: end if
17: end for
18: end for
19: for i← 0 to data1.shape[0]− 1 do
20: for j ← 0 to data1.shape[1]− 1 do
21: if fused_field_data[i][j] < conf_th then
22: timestep_fuse[i][j]← 0
23: end if
24: end for
25: end for
26: return fused_field_data, fused_field_I1, timestep_fuse
27: end procedure
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probabilities values of x given y. In some cases, the increased uncertainty can
reveal significant information about the relationship between the variables. How-
ever, when we use the I2 measure instead of the I1 measure in the fusion process,
the resulting fused information does not offer a meaningful summary over time.

I3 Guided Fusion Stimulus Specific Information (SSI) [10], denoted by I3:

I3(y;X) = −
∑
x∈X

p(x|y) I2(x;Y ) (8)

The response and stimulus are the two variables X and Y. This measure
emphasizes that the most informative data values from the first variable are
related to the most informative data values of the second variable [10]. In some
cases, I1 can be an alternate measure for I3, but the interpretation is different
based on the data [10]. When I3 is used instead of I1 on the simulated rolling ball
dataset, it captured very similar properties shown in Figure 2(a). However, when
applied to a more complex dataset, it failed to capture the spatial properties of
the features in the summarization. This is explained in detail in Section 4.1 and
shown in Figure 3(b)

4 Applications

4.1 MFIX-Exa Flow Simulation

MFIX-Exa [37] is a multiphase flow simulation developed by the National Energy
Technology Laboratory (NETL), USA. Using MFIX-Exa, particle-based data is
generated for studying the operational principles of chemical looping reactors.
In such simulations, the formation of void regions, known as bubbles, is an
important phenomenon. Understanding the temporal evolution of these bubbles
holds significant importance for domain experts.

Data Context and Features For analyzing bubble dynamics, typically the
raw particle data is first converted to a scalar density field. Then bubbles can be
segmented as the connected regions with low particle density. For more details
about this pre-processing, please refer to [23]. In this work, we assume that
the scalar density fields are already available and we use 2D slices extracted
from the density fields. These slices contain scalar values representing particle
density. Our evaluation dataset consists of multiple timesteps (count 332), and
each timestep corresponds to 2D data samples with dimensions of 488 × 842.
The sample values fall within the range of [-1.2 × 10−6, 29.08]. In [23], the
detection, segmentation, and characterization of the bubbles are studied in an
extensive manner. In our work, we use the VTK [46] library to extract the
connected components and then use a low scalar density threshold value to
filter the bubbles. Over time, the bubbles undergo phases like creation, merge,
split, and dissolve into air. Domain experts want to comprehend the evolution
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the direction of the bubbles in one timestep. The alternative I3 is unable to capture
the path of bubbles as reflected in (b) I3 fused data field.
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of bubbles and explore the relationships between various bubble characteristics
such as their size, shape, number of bubbles, etc. [23]. Important events in this
simulation can be characterized by the creation of a bubble, the merging of two or
more bubbles, or the dissolving of a bubble. Note that for all of these events, the
total number of bubbles will change. Hence, a timestep with the bubble number
changed from a previous timestep, can be considered as a "trigger". Here, we
ignore counting changes in very small bubbles since the domain experts are more
concerned about the bubbles when they grow in size.

Results for Data Summarization Figure 3 shows the analysis of the DSTS
method for MFIX-Exa simulation. Timesteps 309 - 315 are shown in the first
row where bubbles are the blue regions. Timesteps 310 to 314, during which
the number of bubbles remains unchanged, are summarized through the fusion
process. Figures 3 (a) represent results from the I1 guided fusion. The I1 fused
data value field a(i) shows the scalar values ranging [−1.4 × 10−6, 23] for the
fused timesteps. Here the change in bubble movement is very prominent. Figure
3 a(ii) presents the I1 values ranging [5.6 × 10−1, 11] for the fused timesteps.
The range of I1 values is smaller, making it less sensitive to bubble movement
compared to particle-density values. However, it effectively highlights the main
bubbles and their temporal dynamics. The timestep summary field in Figure 3
a(iii) represents the timestep values from which the bubbles originate. Here 5
timesteps are distinctly color-coded to reflect the direction of the bubbles from
the start to the end position. The white background (labeled 0) filters all the
density values that are of low importance for this dataset.

We have also implemented the alternative SSI (I3) guided fusion technique
as mentioned in Section 3.4 for MFIX-Exa. Figure 3(b), represents the I3 fused
data value field. Here the bubbles are only partially highlighted and the change in
the bubbles’ movement is also hard to interpret. While I3 captures some spatial
features of the bubbles, the edges are blurred. Thus, the Surprise fusion method
proves to be better than the SSI measure.

4.2 Surveillance Data Analysis and Optimization

To demonstrate DSTS in security camera footage analysis, we used the pub-
licly available SBM-RGBD Dataset [45, 12]. This dataset was originally created
for the Workshop on Background Learning for Detection and Tracking from
RGBD Videos [41]. The dataset comprises 33 RGBD videos, totaling 15033
timesteps, recorded indoors using a Microsoft Kinect sensor [12]. The dataset
contains videos capturing moving objects at intervals, which aligns with our
data requirements. Here, we used one of the videos that shows four individu-
als walking in and out of the view area, engaging in discussions, and writing
on a whiteboard. The most significant impact of our proposed method in this
application is on archiving the storage optimization.

Data Context and features The videos have 640 × 480 resolution and the
length is 1400 timesteps. The key regions (features) are the individuals and
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Fig. 4. Results of the DSTS method for SBM-RGBD dataset. Here the emphasis is on
representing the extensive number of timestep summaries. (a) shows a summarization
of 33 fused timesteps using a discrete color bar. (b) showcases a summarization of 170
fused timesteps, employing a continuous color bar to depict information changes over
a longer period. The color bars point out the spatial direction of the information flow
by denoting the prior and latter states.

their movement. The whiteboard and a chair are stationary in the background.
To extract key regions, we have used a background subtraction algorithm, called
ViBe [4]. The algorithm aims to identify moving objects within consecutive im-
ages or videos by distinguishing between the foreground (moving objects) and the
background (stationary elements). The ViBe algorithm is adaptive and compu-
tationally lightweight, making it suitable for real-time applications. Its straight-
forward pseudocode in [4] facilitates easy implementation. The ViBe algorithm
converts the RGB images into masked binary images with segmented individuals.

In scenarios with multiple individuals, we adopt a concept similar to that
used for counting bubbles in the MFIX-Exa (Section 4.1). We apply the concept
to count the number of individuals in each timestep by analyzing the largest
connected regions in the masked images. Since it is a binary image, the data
samples have two values: 0 (no individual) and 255 (individual). By setting
a size threshold, we can accurately count the number of individuals in each
timestep. Given that individuals move in and out of the view area, the number of
individuals can be used as a trigger for our application. Whenever a person enters
or exits, that is a key timestep. The consecutive timesteps between two triggers
are then fused using Algorithm 1. This fusion process effectively summarizes the
movement patterns of individuals within one timestep.

Results for Data Summarization In Figure 4(a), the summarization field
depicts a fusion of 33 timesteps, where two individuals walk out of the view
area. The leftmost person exits first, initiating the trigger and stopping the
fusion process. Each timestep is represented by a discrete color, highlighting the
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changes in movement over 33 timesteps. Sample values below 255 are set to
0, representing the white background, as the data value of individuals is 255.
Figure 4(b) shows a timestep summary for a longer period of 170 timesteps.
The summarization field captures an individual walking into the view area and
writing on the board, while another person has just stepped in, initiating the
trigger. Continuous colors are used to display the movement changes.Expectedly,
key and summarized timesteps in this dataset result in a significant reduction
from 1400 timesteps to only 49 timesteps. The highest number of timesteps being
fused is 262.

4.3 Tracking Cell Interactions in Lymph Nodes

This dataset contains consecutive images of cellular interactions within the
lymph node (LN). LNs are essential for immune function, playing a crucial role
in initiating immune response and facilitating immune cell communication [35].
We reanalyze data from [50], where information theory-based approaches were
used to identify and quantify the spatial relationships between naïve T cells and
other cell types like Dendritic Cells (DCs). The data for the study was gathered
using two-photon microscopy (2PM) [42] to acquire 3D image stacks of LN tissue
samples from mice. The imaging process captured dynamic movies lasting 10 to
45 minutes, resulting in a sequence of 3D images. This dataset is well-suited for
the application of our method.

0

1

2

3

4

5

(a) 

RGB Image

(b)

I  Fused Timestep Summary Field (c) T cell moving away from DCs

(d) T cells moving towards DCs 

Prior

T
im

es
te

p
 V

al
u

e

  
  

  
T

 C
el

l 

Latter

Overlaid

DCs

T Cell Movement Pattern and Interaction with DC

**

**

Enlarged** =

Fig. 5. Results of the DSTS method for cell interaction in Lymph Node. The results
emphasize T cell movement patterns and interaction with DCs in LN. (a) is an illus-
trative timestep from the dataset. Here red indicates the T cells and green indicates
the DCs. (b) is the surprise fused timestep summary fields of T cell for 5 timesteps.
The black cells in the field are overlaid DCs to highlight cell contact. (c) and (d) are
2 enlarged positions from the (b) field to emphasize T cell movement. (c) shows that
a T cell is moving away from the DCs. (d) shows multiple T cells moving toward the
DCs. The corresponding timestep values are provided in the color bars to highlight the
direction.
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Data Context and Features Figure 5(a) shows an RGB image with T cells
dyed red and Dendritic Cells (DC) dyed green. Each voxel contains the color
intensities of the dye in the red, blue, and green channels. For every time step, we
extract the red and green channels into two separate images. We focus on the red
channel in order to analyze T-cell motility. Because these images contain a lot of
noise, we implement a pre-processing step using the median filter [26], to reduce
noise while preserving the edges of the cells for improved visualization. Since
the red channels specifically represent the T cells, no segmentation is required.
In [50], MI and normalized mutual information (NMI) were used to quantify
associations between cells. Here, we use the MI value between two cell types as
a "trigger". If the MI value for a specific timestep exceeds a specified threshold,
we save that as a key timestep. If the MI value falls below the threshold, we find
the next timestep in which the MI value exceeds the trigger threshold and fuse
the intermediate ones.

Results of Data Summarization Figure 5 focuses on the T cell movement
and interaction with DCs in the summarized timesteps. Figure 5(a) is a sample
timestep of the T:DC dataset with 512× 512× 22 dimensions. This dataset has
a total of 51 timesteps. Figure 5(b) displays the I1 fused timestep summary
field, representing five fused timesteps from this dataset. The black cells in the
summarization represent the DCs’ value field overlaid on the fused summary
field, visually illustrating the physical interactions between T cells and DCs.
Given that there are multiple interactions captured in each timestep, we highlight
two specific interactions by enlarging the locations in Figures 5(c) and (d). In
Figure 5(c), we observe a T cell moving away from the DCs. The color bar on
the right indicates the first (blue) and last (red) timesteps in the summary field,
clearly indicating the movement direction. In Figure 5(d), we see multiple T
cells moving toward the DCs making explicit contact. This visualization allows
for a comprehensive understanding of the dynamic interactions between T cells
and DCs, providing valuable insights into the temporal dynamics of immune cell
communication.

5 Discussion

The proposed DSTS technique has demonstrated its effectiveness and flexibility
across several applications. Starting with a synthetic simulation of a rolling ball
to analyzing complex cellular interactions within lymph nodes, the method effec-
tively showcased its robustness. The combination of the key and fused timestep
resulting from the method provides a compact yet comprehensive data summa-
rization.

We select applications from multiple domains to shed light on different as-
pects of the DSTS method. This technique offers a practical solution to downsize
and analyze the features in the MFIX-Exa simulation. This application analysis
establishes that the method can handle raw scalar data as well as image-based
data that incorporates the rest of the applications. The RGBD tracking dataset



16 H. Tasnim et al.

is introduced to show the method’s ability to summarize and highlight impor-
tant movement patterns of individuals in a video sequence. The results from
this dataset reflect that longer fused timesteps are equally apprehensible as the
shorter ones. This has promising implications for surveillance and security appli-
cations. The cellular interaction in LN is a more complex dataset. T cells which
are the key regions (features) are ample in number and the interactions with DCs
are sporadic in nature. Our method is able to track multiple cell interactions.
The summarization highlights immune cell communication by providing a com-
prehensive visualization of the T cell movement. This visualization potentially
introduces new possibilities for immunological research.

All the applications in this work present post hoc data analysis. Since the
method is not computationally expensive it can be easily combined to analyzing
data in a streaming framework. Through the integration of this method in any
in situ streaming framework, the resulting data will be summarized in real-time
ensuring optimal storage reduction.

We acknowledge that challenges may arise in selecting appropriate triggers
and threshold values, especially in complex datasets with multiple key fea-
tures, interactions, and noise. However, the flexibility of the technique allows
for the adjustment of parameters to tailor the summarization process to differ-
ent applications. Additionally, future research could explore combining different
information-theoretic measures to further enhance the summarization capabili-
ties to multivariate time-varying datasets.

Data Availability

All the code and data are available at https://github.com/htasnim/Dynamic-Spatio-
Temporal-Data-Summarization
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