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Abstract— The rapid advancement of generative models and
their misuse have made deepfake detection a crucial area of
research. However, existing datasets and detection techniques
predominantly focus on frontal-face perspectives, leaving side-
face views largely underexplored. To bridge this gap, we present
IndicSideFace, a novel dataset specifically curated for advancing
deepfake detection on side-face perspectives of Indian subjects.
This dataset encompasses a diverse range of side-face angles,
varying lighting conditions, and demographic attributes, pro-
viding a comprehensive benchmark for evaluating detection
algorithms. Our experiments using state-of-the-art models high-
light the unique challenges posed by side-face deepfakes, such as
partial facial feature visibility and uncommon head poses. The
findings reveal significant limitations in existing detection ap-
proaches when applied to side-face perspectives, underscoring
the need for specialized solutions. With IndicSideFace, we aim
to strengthen the resilience of deepfake detectors and stimulate
further research in this critical yet underexplored domain.

I. INTRODUCTION

The advancement of AI and generative deep neural networks
has revolutionized digital content creation, enabling realistic
deepfake media that alter facial appearances, voices, and
actions in videos, images, and audio [38]. While deepfakes
offer benefits in entertainment, content enhancement, and
education, their misuse for misinformation, fraud, and iden-
tity manipulation underscores the urgent need for robust
detection mechanisms [2].

Despite significant advancements in deepfake detection,
the majority of research efforts and publicly available
datasets have concentrated on frontal-face perspectives, leav-
ing side-face views underexplored [30]. This gap in research
is critical, as deepfake manipulations of side-face views
introduce distinct challenges that differ from frontal-face
alterations. The visibility of facial features in side-face
perspectives is often limited due to occlusions, uncommon
head poses, and variations in environmental factors such as
lighting conditions [34]. These characteristics make side-face
deepfakes harder to detect using existing methods, which
primarily rely on full facial visibility and symmetry-based
analysis. Furthermore, side-face deepfakes pose significant
risks in scenarios where frontal views are not available, such
as in surveillance footage, candid photography, or social
media images captured from different angles. Since current
deepfake detection models are predominantly trained on

frontal perspectives, their ability to generalize to side-face
scenarios remains inadequate, leading to an increased risk of
undetected manipulations in real-world applications [25].

From a technical perspective, distinguishing between in-
door and outdoor side-face deepfakes is essential due to the
considerable variations in lighting, background complexity,
and environmental occlusions. Indoor environments typically
feature controlled lighting conditions, which minimize ex-
treme shadows and reflections, making it easier to identify
inconsistencies in deepfake manipulations. However, artifi-
cial lighting used indoors can also create uniform illumina-
tion, allowing deepfake models to blend synthetic features
more seamlessly, thereby reducing detection effectiveness.
In contrast, outdoor environments introduce additional com-
plexities, such as natural lighting variations, dynamic shad-
ows, and fluctuating illumination levels throughout the day.
Outdoor settings also present unpredictable occlusions, such
as obstacles partially covering the face or interference from
moving objects, which can obscure facial details. Moreover,
factors like motion blur and depth-of-field variations add
further challenges to deepfake detection models, particularly
those trained predominantly on controlled indoor datasets.
By incorporating a diverse range of indoor and outdoor
images, IndicSideFace ensures that detection models are
better equipped to handle real-world variations, ultimately
improving their robustness and generalizability. In the Indian
context, the emergence and rapid dissemination of deepfake
technology presents unique challenges, particularly concern-
ing misinformation, political propaganda, and digital fraud.
With social media shaping public discourse, deepfakes can
manipulate opinions, incite unrest, and harm reputations.
The rise of AI-driven authentication, including biometric
verification in banking, governance, and law enforcement,
further heightens security concerns. Deepfake-based identity
fraud threatens national security and legal integrity.

To bridge the gap in deepfake detection research, we
introduce IndicSideFace, a novel dataset explicitly designed
to advance side-face deepfake detection, particularly for
Indian subjects. This dataset encompasses a broad spectrum
of side-face images captured under varying conditions, in-
cluding different angles, illumination settings (both indoor
and outdoor), and demographic variations. By providing
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a well-structured benchmark, IndicSideFace facilitates the
evaluation of deepfake detection algorithms under realistic
conditions, enabling a more comprehensive understanding
of their limitations and potential improvements. Through
extensive experimental analyses leveraging state-of-the-art
deepfake detection techniques, we assess the performance
of existing approaches in handling side-face deepfakes. Our
findings reveal that current detection frameworks struggle
with side-face perspectives, underscoring the necessity for
specialized detection solutions that can effectively mitigate
the risks associated with side-face deepfake manipulations.

By creating IndicSideFace dataset, we aim to foster fur-
ther research in this underexplored domain, encouraging
the development of more resilient and adaptive deepfake
detection methods. Our primary contributions include: (a)
creation of a high-quality, curated dataset comprising both
real and deepfake side-face images, (b) an in-depth evalua-
tion of existing deepfake detection techniques on side-face
perspectives to highlight their limitations, and (c) valuable
insights into the challenges posed by side-face deepfakes,
along with recommendations for future advancements in
detection methodologies. This work aims at strengthening
digital security and ensuring the authenticity of visual content
in an increasingly AI-driven world.

The rest of the paper is organized as follows. Section II
provides a concise overview of the existing literature. The
following Section III describes the proposed dataset, Indic-
SideFace, including details on the generators utilized for syn-
thetic fake image generation. Section IV briefly introduces
the detectors employed for benchmarking, and Section V
presents the experimental setups and discusses the results.
Finally, Section VI concludes this paper.

II. BRIEF LITERATURE REVIEW

This section enlists some popular publicly available deepfake
datasets, off-the-shelf sythetic fake image generators, and
deepfake detectors [38].

A. Deepfake Datasets

We begin by summarizing some popular publicly available
deepfake datasets, as outlined in Table I.

1) FaceForensics++ (FF++) [35]: This benchmark
dataset includes 1000 genuine videos, each manipulated
using four automated face forgery techniques: Deepfakes
(DF), FaceSwap (FS), Face2Face (F2F), and Neural Textures
(NT), resulting in 4000 fake videos. DF uses autoencoders
for face replacement, FS relies on landmark-based graphics,
F2F transfers expressions while retaining identity, and NT
modifies mouth movements using GAN-based rendering. Al-
though this dataset offers high-quality manipulations, it lacks
diversity in environmental settings and subject demographics,
limiting its effectiveness in real-world scenarios.

2) Celeb-DF [28]: This dataset contains 590 authentic
and 5639 deepfake videos featuring 59 celebrities, with a
balanced representation across gender, age, and ethnicity.
The fake samples are generated using an improved syn-
thesis pipeline that enhances temporal coherence and color

TABLE I: Existing major deepfake datasets
Dataset #Genuine #Fake #Subjects Demography? Side-face?
FaceForensics++ [35] 1000 4000 977 – Limited (varied angles)
Celeb-DF [28] 590 5639 59 – No (frontal celebrity deepfakes)
DFDC [10] 23654 104500 960 – Limited (primarily frontal)
DeepForensics [20] 50000 10000 100 – Minimal (diverse expressions)
INDIFACE [22] 404 1668 58 Indian Limited
KoDF [23] 62166 175776 403 Korean Limited (self-recorded)
DF-Platter [32] 764 132496 454 Indian Limited (multi-face)

alignment through Kalman filtering and data augmentation.
Despite these advancements, the dataset predominantly in-
cludes Western celebrities, which may limit its applicability
for deepfake detection across diverse demographic groups.

3) DeepFake Detection Challenge Dataset (DFDC) [10]:
This dataset comprises 23654 real and 104500 fake videos in-
volving 960 subjects spanning diverse ethnicities, age groups,
and genders, captured under varied environmental condi-
tions. It features multiple manipulation techniques, including
DFAE, MM/NN face swap, NTH, FSGAN, and StyleGAN.
Although DFDC offers substantial real-world variability,
its emphasis on Western subjects and predominantly front-
facing videos may hinder the effectiveness of detection
models on Indian demographics and side-face scenarios.

4) DeeperForensics-1.0 [20]: This dataset comprises
10000 real and 50000 fake videos generated from 100
subjects. Face reenactment and swapping were performed
using DF-VAE, which enables precise disentanglement of
pose and texture. Despite its scale, the dataset was collected
under controlled conditions and primarily uses synthetic
distortions, limiting its ability to reflect real-world variability
and authentic manipulation artifacts.

5) INDIFACE [22]: This dataset addresses the under-
representation of Indian demographics in deepfake datasets.
It features 404 real and 1668 fake videos generated using
SimSwap and Ghost. It captures diverse Indian faces with
variations in skin tone, facial structure, and cultural back-
grounds, and includes real-world perturbations such as Gaus-
sian blur and brightness changes. Fine-tuning on INDIFACE
improves detection performance, highlighting the need for
demographic-specific datasets.

6) Korean DeepFake Detection Dataset (KoDF) [23]:
This dataset comprises 62166 real and 175776 fake videos
aimed at improving representation of Korean subjects. It
employs six manipulation methods: FaceSwap, DeepFace-
Lab, FSGAN, FOMM, ATFHP, and Wav2Lip. It ensures
quality through carefully curated real clips and validated
synthetic videos, filling gaps in subject representation across
benchmarks.

7) DF-Platter [32]: This dataset tackles real-world chal-
lenges such as low resolution, occlusion, and multiple faces.
It comprises 764 real and 132496 fake videos generated
using FSGAN, FaceShifter, and FaceSwap. It emphasizes
Indian ethnicity with a balanced gender and age distribution.
While it strengthens evaluation under practical conditions, it
includes limited coverage of side-face perspectives.

B. Generators
Deepfake generation has rapidly advanced with the emer-
gence of sophisticated generative models, primarily pow-



ered by GANs, VAEs, and more recently, diffusion-based
architectures. These models aim to synthesize or manipulate
facial identities, expressions, and movements in videos or
images while ensuring high visual realism and temporal
coherence [16]. Early approaches like faceswap and deep-
fakes relied on autoencoder frameworks for face replacement
in video frames. Subsequent models, such as Face2Face
[41] and Neural Textures [42], introduced real-time facial
reenactment and texture-based rendering. More advanced
architectures like FaceShifter [26] and FSGAN [33] ad-
dressed robustness to occlusions, identity mismatches, and
pose variations by incorporating identity-aware synthesis and
reenactment pipelines. DeepFaceLab [30] further popularized
customizable deepfake creation with modular autoencoder-
based pipelines, while SimSwap [7] unified identity en-
coding and style-based generation for arbitrary face swaps.
Recent innovations, such as FaceDancer [34] attempted to
enhance face swapping performance under non-frontal head
poses by employing attention-based feature fusion and pose-
aware regularization. Disentangled representation learning
has become prominent in improving control and realism.
RelGAN [45] separated semantic and structural information,
enabling targeted manipulation. In attribute editing, models
like TUSLT [44] used CLIP-based supervision for multi-
attribute transformation in StyleGAN latent space, while
AU-EditNet [21] incorporated cross-branch interaction for
improved disentanglement of identity and expression fea-
tures. DreamSalon [29] introduced a two-stage diffusion
framework enabling fine-grained attribute editing while pre-
serving contextual identity. The recent shift toward diffusion-
based models offers improved video consistency and realism.
Latent flow diffusion [6] enhanced temporal coherence by
modeling optical flow in latent space and integrating fre-
quency and spatial cues. Multi-modal techniques [39], [49]
further enriched generation by combining facial landmarks,
audio, and motion features. Prototype-driven methods [48]
improved generalization using shared latent representations
across identities.

Despite significant progress, challenges remain in handling
extreme non-frontal head poses, fast motion, and gener-
alizing to unseen identities, particularly in real-world or
demographically diverse scenarios. Reducing artifacts and
maintaining authenticity continue to drive ongoing research
in deepfake generation.

C. Detectors

Deepfake detection has become an essential research area
in response to the increasing realism of generative mod-
els. Initial approaches focused on visual artifacts such as
inconsistent blinking [27] and abnormal head poses [47],
but these became less effective as synthesis techniques
evolved. To overcome these limitations, deep learning-based
methods were introduced. MesoNet [1] proposed a compact
CNN that captured mesoscopic features, while XceptionNet-
based detectors [35] achieved strong results through trans-
fer learning on large-scale datasets like FaceForensics++.
Temporal approaches, including LSTM-based [17] and re-

current convolutional architectures [36], modeled spatio-
temporal inconsistencies across frames, improving perfor-
mance on manipulated videos. Beyond RGB-based detection,
frequency-domain techniques [12], [14] analyzed spectral
discrepancies that often revealed generative artifacts not
visible in the spatial domain. Transformer-based models such
as TransForensics [19] leveraged self-attention mechanisms
to capture fine-grained manipulations. Additionally, multi-
modal methods combining facial cues with audio [31] or
biological signals [9] offered improved robustness under
challenging conditions.

Despite these advancements, empirical evidence suggests
that most detectors are trained and evaluated predominantly
on near-frontal facial inputs. As a result, they struggle
to generalize to profile or side-face views, where modern
deepfakes remain highly convincing. This poses a serious
limitation for real-world deployment.

III. PROPOSED DATASET: INDICSIDEFACE

This section presents the proposed IndicSideFace dataset,
outlining the collection process of real images and the
manipulation techniques used to generate fakes.

A. Genuine Data Collection

To capture the diversity of India’s population, we selected
164 individuals of Indian origin from various regions, en-
compassing a broad spectrum of skin tones and facial fea-
tures. This selection aimed to represent a wide range of
ethnic and cultural backgrounds, ensuring the dataset is both
comprehensive and inclusive. The gender distribution in this
dataset includes 26 females, and 138 males. Additionally, 43
out of the 164 subjects wore glasses.

We collected 6 genuine images from an individual wearing
daily attire (refer to top row of Fig. 1 for an example). Three
of these images were captured indoors, showcasing frontal,
left, and right side face views. The remaining three images
were taken outdoors, providing a variety of background con-
texts. In total, the dataset comprises 984 (= 6×164) genuine
face images. The images were primarily captured upto the
bust to ensure that the person’s head, face, and shoulders
were clearly visible. However, for added naturalness and
diversity, some images included slight cropping of the head
and side portions. To further enhance the diversity of our
dataset, we utilized various smartphone cameras, with a
majority of the images taken using the subjects’ personal
smartphones.

B. Synthetic Fake Data Generation

We generated fake face images synthetically using five differ-
ent identity-swapping tools, and one attribute manipulation
tool, as discussed below.

1) Identity Swapping Tools:
a) Ghost [15]: This framework is a one-shot transfer

method for face swapping, effectively combining identity
transfer and attribute preservation. It features an identity
encoder, a U-Net-based attribute encoder, an AAD generator
for combining identity and attribute vectors, and a multiscale
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Fig. 1: Synthetic fake images of a male subject in IndicSideFace generated by identity swapping tools [7], [8], [15], [18],

[34]. Source and corresponding target face images are genuine. (Best viewed in color)
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Fig. 2: Attribute manipulated fake images of the same source
images of Fig. 1 in IndicSideFace.

discriminator for ensuring image quality. Enhanced by a cus-
tom loss function, including reconstruction, attribute, iden-
tity, adversarial, and eye loss, it maintains gaze consistency
in swaps. The model addresses shape mismatches through
landmark tracking and ensures stability via bounding box
smoothing. Pretrained on the VGG-Face2 dataset [5], Ghost
was used to generate 2952 (= 984 × 3) fake images by
pairing each of the 984 genuine face images with 3 different
randomly chosen target images in this study.

b) SimSwap [7]: This simple face-swapping frame-
work, designed for high fidelity and generalization to arbi-
trary identities, transfers the identity of a source face onto a
target face while preserving the target’s key attributes, such
as facial expressions and gaze direction. This is achieved
through the ID injection module that embeds source identity
information at the feature level, and the weak feature match-
ing loss that implicitly ensures facial attribute preservation.
Here also, it was pretrained using the VGG-Face2 [5], and
each of the 984 genuine images leveraged 3 different target
images to produce 2952 fake images.

c) SimSwap++ [8]: It is an upgraded version of Sim-
Swap [7] for face identity editing, which introduces con-
ditional dynamic convolution that enhances efficiency by
enabling anisotropic processing and injection with lower
complexity, and morphable knowledge distillation, a hetero-
geneous teacher-student framework that maximally retains

TABLE II: Sample count of IndicSideFace
Generator Indoor Outdoor

Side-face Left Frontal Right Left Frontal Right Total
Genuine samples 164 164 164 164 164 164 984

Ghost [15] 492 492 492 492 492 492 2952
SimSwap [7] 492 492 492 492 492 492 2952

SimSwap++ [8] 492 492 492 492 492 492 2952
FaceDancer [34] 492 492 492 492 492 492 2952

Identity
Swapping

InsightFace [18] 328 328 328 328 328 328 1968

Fa
ke

sa
m

pl
es

Attribute
Manipulation FaceApp [13] 1312 1312 1312 1312 1312 1312 7872

21648

the teacher’s knowledge while reducing model complexity
through structure re-parameterization. Similar to the above
strategy, we generated 2952 fake images utilizing Sim-
Swap++, pretrained on VGGFace2-HQ [8].

d) FaceDancer [34]: This is a single-stage framework
for subject-agnostic face swapping and identity transfer,
featuring two key innovations: AFFA and IFSR. The AFFA
module, embedded in the decoder, adaptively fuses attribute
features and identity-conditioned features without requiring
additional facial segmentation. IFSR leverages intermediate
features in the identity encoder to preserve critical target face
attributes, such as head pose, facial expressions, lighting,
and occlusions, while achieving high-fidelity identity transfer
from the source face. In this paper, we engaged FaceDancer
pretrained on the VGGFace2 [5] and LS3D-W [4] datasets
to obtain 2952 fake images, similar to the aforementioned
strategy.

e) InsightFace [18]: For synthetic image generation,
we also utilize Picsi.Ai face-swapping service, powered by
InsightFace, which integrates inswapper_cyn and inswap-
per_dax face-swapping models. Here, for each of the 984
genuine face images, we paired them with 2 different target
images, resulting in a total of 1968 (= 984×2) fake images.

For all of the aforementioned identity swapping tools,
source and target images are of the same side profile and
gender. In Fig. 1, we present 84 (= 14 × 6) synthetic fake
images of a male subject generated by the above identity
swapping tools.

2) Attribute Manipulation Tool:
a) FaceApp [13]: This is one of the widely popular

photo editing applications that we utilized for facial attribute
manipulation. We applied 8 attribute filters, including age,
beard, expression, gender, glasses, hair color, hair style,
and skin tone, to each of the 984 genuine face images for
generating a total of 7872 (= 984 × 8) fake images. Fig. 2
shows 48 (= 8× 6) fake sample images obtained from this
attribute manipulation tool of the same male subject shown
in Fig. 1.

Table II provides a summary of the sample distribution in
our dataset, IndicSideFace, which comprises a total of 984
genuine samples and 21648 fake samples from 164 subjects.
Each of the 6 side face categories (i.e., IL: indoor_left,
IF: indoor_frontal, IR: indoor_right, OL: outdoor_left, OF:
outdoor_frontal, OR: outdoor_right) includes 164 genuine
samples, and 3608 fake samples.

C. Informed Consent

Informed consent was obtained from each participant before
any facial data was collected. Clear explanations were pro-



TABLE III: Performance (BA %) of pretrained detectors on generator-specific fake image groups paired with genuine images
Identity Swapping Attribute Manipulation

Detector Category SimSwap [7] SimSwap++ [8] Ghost [15] FaceDancer [34] InsightFace [18] Age Beard Expression Gender Glasses Hair color Hair style Skin tone Mean
IL 37.58 39.87 40.20 41.63 51.47 48.39 48.51 48.26 51.96 41.25 39.06 48.73 48.73 45.05
IF 45.75 45.42 43.87 39.54 51.47 51.51 52.94 49.37 50.86 49.37 50.08 48.25 46.42 48.07
IR 42.10 36.10 41.53 43.44 53.63 51.40 51.77 51.53 50.10 48.44 48.28 48.28 50.10 47.44
OL 44.55 44.39 44.81 46.94 52.45 50.86 51.33 47.94 48.77 49.10 51.09 51.16 47.77 48.55
OF 47.39 46.08 47.55 45.42 50.00 43.63 51.96 45.96 39.00 48.63 51.96 50.40 51.96 47.69

Selim [37]

OR 45.33 39.33 44.03 47.33 49.51 50.00 50.00 50.00 50.00 48.48 45.65 46.43 48.28 47.26
Overall 43.78 41.87 43.67 44.05 51.42 49.30 51.09 48.84 48.45 47.55 47.69 48.88 48.88 47.34

IL 50.00 50.31 50.98 50.00 50.49 49.19 50.98 50.98 47.13 50.98 49.37 50.98 50.98 50.18
IF 53.27 53.27 50.25 50.98 50.98 51.06 52.36 50.35 47.67 52.14 52.49 52.36 51.75 51.46
IR 49.02 49.69 48.51 47.02 48.57 51.02 46.02 47.45 46.02 49.35 51.02 46.47 49.35 48.42
OL 49.33 48.03 49.75 49.33 49.51 50.00 48.39 50.00 50.00 48.08 50.00 50.00 48.28 49.28
OF 49.67 48.69 49.75 49.67 49.02 50.00 50.00 50.00 48.15 50.00 50.00 48.44 50.00 49.49

CNN-
Detector [43]

OR 50.29 50.29 49.97 50.63 50.49 48.39 50.35 50.64 50.18 50.45 51.96 51.96 51.96 50.58
Overall 50.26 50.05 49.87 49.61 49.84 49.94 49.68 49.90 48.19 50.17 50.81 50.04 50.39 49.90

IL 39.18 36.04 40.03 44.59 31.18 31.47 32.59 30.32 38.98 33.74 31.52 39.96 33.76 35.64
IF 38.55 48.28 34.71 36.13 37.96 37.38 30.22 38.05 35.90 35.99 36.67 39.41 36.15 37.34
IR 38.41 35.18 34.85 39.03 43.67 38.32 39.15 37.03 35.27 39.54 31.81 30.86 38.84 37.07
OL 40.54 37.32 35.03 37.21 37.83 36.10 33.04 35.89 33.05 30.26 38.01 35.45 44.81 36.50
OF 37.31 36.19 30.96 35.40 39.39 31.63 38.87 31.33 30.08 33.27 32.47 32.46 39.15 34.50

ViT [46]

OR 38.11 41.17 35.00 34.05 37.78 35.24 32.84 31.74 30.62 38.71 32.38 34.05 33.28 35.00
Overall 38.68 39.03 35.09 37.74 37.97 35.02 34.45 34.06 33.98 35.25 33.81 35.37 37.67 36.01

IL 49.09 49.90 48.48 47.88 55.48 43.08 49.33 45.89 42.76 45.89 54.75 43.39 44.01 47.69
IF 45.06 48.08 47.49 47.49 50.83 43.52 47.18 44.43 43.52 42.30 48.70 42.91 43.82 45.79
IR 47.63 48.45 49.46 49.16 52.70 46.58 47.50 48.42 47.19 46.58 50.56 49.03 47.19 48.50
OL 49.71 48.58 49.90 48.55 48.96 45.88 45.96 47.42 47.49 44.19 42.90 40.43 46.45 46.65
OF 49.33 48.42 49.33 50.35 54.93 46.84 40.74 47.75 45.85 41.35 38.79 40.02 46.84 46.20

NPR [40]

OR 49.47 48.58 48.95 49.47 51.69 48.80 48.19 48.49 49.10 47.58 50.32 50.32 49.96 49.30
Overall 48.38 48.67 48.94 48.81 52.43 45.78 46.48 47.07 45.98 44.65 47.67 44.35 46.38 47.35

vided regarding the objectives of the research project and
the purpose of collecting their facial data. Participation was
voluntary, and participants were assured that their data would
be used for research purposes.

IV. BENCHMARKING

To benchmark our IndicSideFace dataset, we employed four
state-of-the-art off-the-shelf baseline detectors to identify
fake images, as detailed below:

(i) Selim (DFDC Winner): Selim, the winner of the
DeepFake Detection Challenge (DFDC) [10], leverages
EfficientNet-B7 as its encoder and employs multitask cas-
caded CNN as the detector for its superior speed and memory
efficiency [37]. The model’s performance is finetuned by
optimizing input sizes, while its generalization capability is
bolstered through advanced data augmentation techniques,
including isotropic scaling and dropout-based variations.

(ii) NPR-based Detector: Up-sampling operators in CNN-
based generators induce local pixel interdependencies, result-
ing in generalized forgery artifacts. Neighboring Pixel Re-
lationships (NPR) [40] effectively characterizes and detects
these structural artifacts in GAN- and diffusion-generated
images.

(iii) CNN-Detector: This detector [43] operates on the
principle that, with proper pre- and post-processing and data
augmentation, a standard image classifier trained on a single
CNN generator can effectively generalize to unseen samples.

(iv) ViT-based Detector: Vision Transformer (ViT) [11]
has demonstrated well performance in classification tasks
by utilizing self-attention mechanisms to capture long-range
dependencies and global context. Recognizing its capabil-
ity to detect subtle forgery artifacts and generalize across
datasets, we engage ViT for deepfake detection [46] to
evaluate its effectiveness in identifying spatial and structural
inconsistencies.

TABLE IV: Performance of pretrained detectors

Detector Category P % R % FM % A % BA %
IL 48.42 86.18 62.00 44.68 45.05
IF 50.24 90.25 64.55 48.11 48.07
IR 49.50 84.67 62.48 46.66 47.44
OL 49.35 91.22 64.05 47.85 48.55
OF 48.84 91.45 63.68 47.48 47.69
OR 49.89 94.52 65.31 47.62 47.26

Selim [37]

Overall 49.37 89.72 63.68 47.07 47.34
IL 50.86 98.41 67.06 51.00 50.18
IF 51.75 95.07 67.02 52.52 51.46
IR 50.03 94.81 65.50 49.14 48.42
OL 49.65 98.57 66.04 49.21 49.28
OF 49.68 98.99 66.16 49.35 49.49
OR 51.32 97.24 67.18 51.48 50.58

CNN-
Detector [43]

Overall 50.55 97.18 66.49 50.45 49.90
IL 53.69 17.62 26.53 21.87 35.64
IF 55.63 12.70 20.68 22.65 37.34
IR 56.54 11.62 19.28 25.15 37.07
OL 33.83 12.02 17.74 29.67 36.50
OF 49.10 12.24 19.60 23.80 34.50
OR 55.92 11.30 18.80 21.71 35.00

ViT [46]

Overall 50.79 12.92 20.44 24.14 36.01
IL 52.36 50.70 51.52 51.83 47.69
IF 50.47 48.79 49.62 49.68 45.79
IR 53.64 51.43 52.51 52.53 48.50
OL 52.62 47.62 50.00 49.11 46.65
OF 52.88 48.26 50.46 49.63 46.20
OR 55.92 50.84 53.26 53.28 49.30

NPR [40]

Overall 52.98 49.61 51.23 51.01 47.35

V. EXPERIMENTS AND DISCUSSIONS

This section presents and analyzes the experimental results.
The problem was formulated as a binary classification task
from the perspective of detectors to distinguish between
genuine and fake images. We conducted benchmarking using
both pretrained detectors and those fine-tuned on our Indic-
SideFace dataset via transfer learning.

A. Evaluation Metrics

We evaluated performance using the following metrics: Pre-
cision (P), Recall (R), F-measure (FM), Accuracy (A), and
Balanced Accuracy (BA). Our IndicSideFace dataset poses a
challenge due to class imbalance, containing 984 genuine and
21648 fake samples. In such scenarios, BA serves as a more



TABLE V: Performance (BA %) of transfer learning-based detectors on generator-specific fake image groups paired with
genuine images

Identity Swapping Attribute Manipulation
Detector Category SimSwap [7] SimSwap++ [8] Ghost [15] FaceDancer [34] InsightFace [18] Age Beard Expression Gender Glasses Hair color Hair style Skin tone Mean

IL 87.48 94.13 74.94 77.46 82.77 89.42 82.33 85.32 89.93 87.35 84.21 83.55 90.09 85.31
IF 95.65 89.01 78.11 76.08 91.29 89.01 80.41 81.82 85.61 86.91 79.16 74.90 82.99 83.92
IR 88.79 95.15 77.52 79.48 90.50 84.59 79.41 83.96 84.70 87.04 82.62 85.47 86.26 85.04
OL 89.00 89.60 72.78 80.15 89.84 89.41 85.83 85.71 85.74 88.12 83.99 77.18 88.40 85.06
OF 93.43 90.04 81.54 76.56 88.31 87.65 85.13 80.03 86.97 89.21 82.86 80.60 84.56 85.15

Selim [37]

OR 93.22 93.21 71.21 75.39 86.55 88.13 77.68 86.49 83.33 85.71 87.07 82.21 85.03 84.25
Overall 91.26 91.86 76.02 77.52 88.21 88.04 81.80 83.89 86.05 87.39 83.32 80.65 86.22 84.79

IL 98.69 92.16 70.59 56.51 86.76 91.88 84.99 75.82 90.31 86.80 95.79 94.81 87.67 85.60
IF 96.73 93.14 68.38 81.37 89.71 84.65 84.16 81.62 83.46 84.38 90.00 87.47 69.65 84.21
IR 97.63 92.52 74.36 65.70 89.39 89.53 80.54 80.87 86.94 84.80 98.98 87.29 90.92 86.11
OL 88.54 93.46 64.68 56.20 85.29 93.75 89.97 72.75 85.66 85.48 92.37 91.35 82.32 83.22
OF 97.06 93.14 68.87 71.90 87.25 85.54 80.32 85.06 91.50 89.71 93.90 90.41 84.75 86.11

CNN-
Detector [43]

OR 97.00 93.14 69.02 56.51 89.71 91.70 80.93 74.38 91.53 77.63 96.85 90.20 90.91 84.58
Overall 95.94 92.93 69.32 64.70 88.02 89.51 83.49 78.42 88.23 84.80 94.65 90.26 84.37 84.97

IL 87.54 78.38 94.20 95.54 92.88 75.07 87.65 93.37 86.73 75.12 95.77 68.86 84.82 85.84
IF 78.47 82.86 93.70 77.56 84.48 70.47 83.63 81.64 81.24 68.82 87.39 61.77 80.60 79.43
IR 90.76 80.32 92.53 90.79 91.37 70.34 82.66 91.97 85.39 79.56 91.32 88.34 82.99 86.03
OL 92.27 74.50 94.10 93.90 89.97 71.33 84.70 97.15 94.27 90.40 94.17 84.83 83.90 88.11
OF 87.42 86.91 93.19 88.10 87.84 82.29 89.14 92.52 86.48 87.51 93.19 84.12 81.38 87.70

ViT [46]

OR 92.97 77.32 93.40 93.92 93.67 60.00 87.16 96.27 67.16 91.79 90.20 83.58 80.27 85.21
Overall 88.24 80.05 93.52 89.97 90.04 71.58 85.82 92.15 83.55 82.20 92.01 78.58 82.33 85.39

IL 50.01 50.03 50.01 50.02 50.48 51.29 54.48 50.96 51.29 50.96 64.66 51.94 50.96 52.08
IF 50.00 50.01 50.02 50.00 50.64 50.68 53.29 50.37 50.68 50.65 66.72 51.40 50.36 51.91
IR 50.00 50.04 50.00 50.01 49.86 50.65 51.74 50.35 50.35 50.33 57.89 52.30 50.33 51.07
OL 49.80 50.22 50.11 50.23 49.92 50.34 54.26 50.65 51.63 50.32 56.13 51.01 50.32 51.15
OF 50.00 50.55 50.44 50.44 52.03 52.15 55.04 52.43 53.73 51.42 55.74 53.64 52.45 52.31

NPR [40]

OR 50.01 50.34 50.66 49.85 49.46 52.07 53.42 50.47 51.16 50.40 59.52 52.36 51.08 51.60
Overall 49.97 50.20 50.21 50.09 50.40 51.20 53.70 50.87 51.47 50.68 60.11 52.11 50.92 51.69

suitable evaluation metric, as it averages the true positive
rate and false positive rate, ensuring a balanced assessment
of model performance [3].

B. Baseline Performance of Pretrained Detectors

To ensure a comprehensive evaluation, we begin by assessing
the baseline performance of off-the-shelf pretrained detec-
tors, including Selim [37], NPR-based detector [40], CNN-
detector [43], and ViT-based detector [46]. These detectors
were pretrained on diverse datasets: Selim [37] on DFDC
dataset [10], ViT [46] on OpenForensics [24], and CNN-
detector [43] and NPR [40] on ForenSynths dataset1.

In our study, we employed a zero-shot evaluation strategy
for pretrained detectors, meaning that no IndicSideFace data
was used during training. The entire IndicSideFace dataset
served as the test set, and the results are summarized in
Table IV. This table presents the performance of the detectors
across six categories: indoor_left (IL), indoor_frontal (IF),
indoor_right (IR), outdoor_left (OL), outdoor_frontal (OF),
and outdoor_right (OR). Overall, Selim [37], CNN-detector
[43], ViT [46], and NPR [40] achieved 47.34%, 49.90%,
36.01%, and 47.35% BA, respectively.

We evaluated the detector performances on separate
groups of fake images generated by each of the employed
generators [7], [8], [13], [15], [18], [34]. For the experiments,
we paired all genuine images with individual generator-
specific fake image groups. The results with respect to BA
are summarized in Table III. From this table, for example,
it can be observed that by employing the above pretrained
Selim [37] on a test dataset comprising all genuine IL images
and SimSwap [7]-generated fake IL images, a BA of 37.58%
was achieved.

1https://github.com/chuangchuangtan/NPR-DeepfakeDetection,
https://github.com/peterwang512/CNNDetection, Accessed: 2025-05-10

TABLE VI: Performance of detectors with transfer learning

Detector Category P % R % FM % A % BA %
IL 84.17 86.57 85.35 85.28 85.31
IF 84.39 84.30 84.31 83.94 83.92
IR 84.65 84.80 84.68 85.06 85.04
OL 86.56 84.87 85.63 84.98 85.06
OF 84.01 85.76 84.85 85.13 85.15
OR 84.48 84.87 84.61 84.32 84.25

Selim [37]

Overall 84.71 85.19 84.90 84.79 84.79
IL 88.76 88.54 88.65 89.39 85.60
IF 85.89 83.65 84.76 87.26 84.21
IR 86.83 88.40 87.61 88.57 86.11
OL 85.50 87.70 86.59 87.54 83.22
OF 87.44 87.60 87.52 89.01 86.11
OR 85.93 88.31 87.10 87.48 84.58

CNN-
Detector [43]

Overall 86.73 87.37 87.04 88.21 84.97
IL 89.26 86.35 87.78 86.74 85.84
IF 84.17 82.88 83.52 81.52 79.43
IR 88.70 87.32 88.00 87.09 86.03
OL 91.65 88.81 90.21 89.01 88.11
OF 89.08 91.13 90.09 88.96 87.70
OR 87.14 87.13 87.14 86.01 85.21

ViT [46]

Overall 88.33 87.27 87.79 86.56 85.39
IL 61.57 49.90 55.12 63.32 52.08
IF 61.78 50.40 55.51 59.77 51.91
IR 60.95 49.03 54.35 57.95 51.07
OL 60.26 50.44 54.91 57.66 51.15
OF 62.10 53.40 57.43 61.51 52.31
OR 61.60 51.61 56.17 59.85 51.60

NPR [40]

Overall 61.38 50.80 55.58 60.01 51.69

C. Performance of Transfer Learning-based Detectors

We explored the impact of transfer learning by retraining
the detectors, adapting them to the specific characteristics
of our IndicSideFace dataset. For Selim [37], CNN-detector
[43], and NPR [40], we unfroze the last three layers and
applied transfer learning for retraining. In the case of ViT
[46], the entire MLP head was retrained. We utilized 60%
of the IndicSideFace dataset for retraining and the remaining
40% for testing. The results presented here are based on this
test set. From Table VI, we can observe that Selim [37],
CNN-detector [43], ViT [46], and NPR [40] obtained overall
84.79%, 84.97%, 85.39%, and 51.69% BA, respectively.



We also assessed the transfer learning-based detector per-
formances on generator-specific fake image groups paired
with genuine images. For retraining the detectors, we utilized
60% of the generator-specific fake image groups along with
60% genuine images of IndicSideFace. The remaining 40%
of the generator-specific fake images and 40% of genuine
images were used for testing, and the results are detailed in
Table V expressed in terms of BA. For instance, this table
shows that applying the above transfer learning-based Selim
[37] to a test dataset comprising 40% genuine IL images and
SimSwap [7]-generated fake IL images yielded 87.48% BA.

D. Cross Dataset Evaluation

To assess the generalization capability of the detectors,
we conducted cross-dataset evaluations on IndicSideFace
using two experimental setups: ES-C1, and ES-C2. We first
partitioned genuine images of 164 subjects of IndicSideFace
into two equal distinct groups: group-1 and group-2, each
consisted of 82 (= 164/2) subjects, contributing a total of
492 (= 82× 6) genuine images.

• ES-C1: The detectors were retrained using 13776 fake
images of IndicSideFace dataset, generated via identity swap-
ping, and 492 genuine images from above group-1. They
were then tested on 7872 attribute-manipulated fake images
from IndicSideFace, and 492 genuine images from group-2.

• ES-C2: This setup swapped the training and testing sets
of ES-C1. Specifically, the detectors were retrained using
7872 fake images created through attribute manipulation, and
tested on 13776 fake images generated via identity swapping.
Additionally, the training set contained 492 genuine images
from group-2, while the test set included 492 genuine images
from group-1.

In ES-C1 and ES-C2 also, Selim [37], CNN-detector [43],
and NPR [40] engaged transfer learning by unfreezing the
last three layers of each model for retraining, whereas ViT
[46] retrained the entire MLP head.

The results, summarized in Table VII, highlight the gen-
eralization performance of the detectors on test sets of ES-
C1 and ES-C2. Among all detectors engaged here, ViT [46]
achieved the highest BA, while Selim [37] recorded the
lowest.

TABLE VII: Performance of detectors on cross dataset

Experimental Detector P % R % FM % A % BA %Setup
Selim [37] 88.82 96.22 92.37 85.87 49.59

CNN-Detector [43] 90.70 96.55 93.53 88.13 58.64
ViT [46] 91.56 99.99 95.59 91.76 61.60ES-C1

NPR [40] 89.13 84.39 86.69 86.67 50.43
Selim [37] 93.05 82.53 87.48 77.94 48.17

CNN-Detector [43] 94.29 97.58 95.90 92.22 57.50
ViT [46] 85.78 81.23 83.45 83.25 83.30ES-C2

NPR [40] 89.29 84.24 86.69 86.69 50.00

E. Observations

We observed that pretrained deepfake detectors struggled
to identify manipulations in side-face images, as shown in
Tables III, IV. The BA in this scenario ranged from only

36.01% to 49.90%, indicating a significant performance drop
compared to only its near-frontal counterparts. This suggests
that existing models, primarily trained on frontal views, are
not adequately equipped to generalize across diverse head
poses. However, when these detectors were fine-tuned using
transfer learning on the IndicSideFace dataset, we observed
a substantial performance improvement (refer to Tables V,
VI). The BA increased to a range of 51.69% to 85.39%,
demonstrating the value of domain-specific retraining. This
highlights the importance of pose-diverse training data in
building robust deepfake detectors suitable for real-world
applications.

VI. CONCLUSION

Existing deepfake detection research has predominantly fo-
cused on frontal-face perspectives, leaving side-face manip-
ulations largely unexplored. In this work, we introduced
IndicSideFace, a novel dataset explicitly designed to advance
deepfake detection for side-face perspectives of Indian sub-
jects, incorporating diverse lighting conditions (indoor and
outdoor). IndicSideFace consists of 984 genuine images and
21648 fake images generated using five identity-swapping
tools and one attribute manipulation tool. Our benchmarking
experiments with state-of-the-art deepfake detection models
revealed a critical limitation: existing approaches struggle
to detect side-face deepfakes effectively, particularly under
varying lighting conditions. These results emphasize the
necessity for fine-tuning or developing specialized models
to improve detection performance on Indian side-face deep-
fakes. This initial study highlights an urgent need for dedi-
cated research in this domain. Future work will focus on ex-
panding the dataset with additional manipulation techniques,
increasing its scale, and developing more robust deepfake
detection methodologies tailored for side-face perspectives.
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