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Abstract—Scientists nowadays use data sets generated from
large-scale scientific computational simulations to understand the
intricate details of various physical phenomena. These simula-
tions produce large volumes of data at a rapid pace, containing
thousands of time steps so that the spatio-temporal dynamics
of the modeled phenomenon and its associated features can be
captured with sufficient detail. Storing all the time steps into
disks to perform traditional offline analysis will soon become
prohibitive as the gap between the data generation speed and
disk I/O speed continues to increase. In situ analysis, i.e., in-
place analysis of data when it is being produced, has emerged
as a solution to this problem. In this work, we present an
information-theoretic approach for in situ reduction of large-
scale time-varying data sets via a combination of key and fused
time steps. We show that this approach can greatly minimize
the output data storage footprint while preserving the temporal
evolution of data features. A detailed in situ application study is
carried out to demonstrate the in situ viability of our technique
for efficiently summarizing thousands of time steps generated
from a large-scale real-life computational simulation code.

Index Terms—Time-varying data, data fusion, in situ analysis,
information theory, visualization.

I. INTRODUCTION

With the increase in computing capabilities, large-scale
scientific simulations now produce very large data sets con-
taining thousands of time steps. These computer simulations
help scientists in understanding the intricate nature of various
physical phenomena. All of these phenomena are time-varying
in nature and their simulations produce data sets that can take
terabytes (TBs) to petabytes (PBs) of disk storage. Storing all
such data will be prohibitive since the data generation velocity
will outpace the rate at which it can be stored into disks [1],
[2]. The bottleneck of slow disk I/O and extreme data volume
will entail novel data triage strategies that can work in real-
time with the simulation, i.e., in situ, and produce informative
data summaries, significantly smaller than the raw simulation
output, enabling flexible post hoc analysis.

Currently, to manage the output data size, simulation scien-
tists often skip regular intervals of time steps and store every
nth (n typically varies between 50 ∼ 100) time step. By doing
so, the scientists remain oblivious of the events that take place

in those skipped time steps. A better strategy could be to detect
the key time steps and store only the key time steps so that the
important events can be preserved. In this case, even though
the key time steps are stored, a comprehensive summary of
all the time steps will still be missing. Another complicating
factor is that many existing key time step detection techniques
for scientific data sets assume the availability of all the time
steps [3], [4]. For an in situ approach, where data becomes
available in a streaming fashion, one-time step at a time, such
algorithms (a) may not be readily applicable, (b) could be
computationally expensive. So, in recent years, researchers
have focused on developing in situ techniques that allow
identification of important time points during the simula-
tion [5]–[7]. However, such techniques typically do not offer
any integrated data summarization strategy. Therefore, new
automatic in situ time-varying data summarization techniques
are needed that will produce informative and comprehensive
data summaries with minimal storage footprints.

In this work, we propose a spatio-temporal data summa-
rization technique that uses information-theoretic measures to
quantify data value importance between consecutive time steps
and summarizes data from a sequence of time steps into a
single fused data set. As the simulation runs for long hours in
supercomputers, the proposed technique analyzes data in situ,
identifies key time steps based on a user-provided criterion,
and summarizes the data between every two consecutive key
time steps into a single summarized data set that captures a
comprehensive view of the features for the time window. The
proposed method stores raw simulation data for each key time
step along with time-varying data summaries for time steps
between every two key time steps. We show that the output
data size for our method is significantly smaller compared
to the raw simulation data size and that the summary data
can be visualized interactively during post hoc exploration.
To show the efficacy of the proposed technique, we conduct a
detailed in situ application study with a large-scale simulation.
Therefore, our contributions in this work are twofold:

• We propose an adaptive spatio-temporal data summariza-
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tion technique for large-scale time-varying data sets that
produces summary data as a combination of key and
fused time steps to preserve: (a) the important events,
and (b) a comprehensive view of the simulation data.

• We study the effectiveness of the proposed algorithm in
situ with a large-scale simulation and demonstrate its
practical applicability and in situ viability.

II. RELATED WORKS

With modern supercomputers producing large-scale data
sets, in situ analysis has emerged as a promising solution
and several in situ analysis frameworks such as Ascent [8],
ParaView Catalyst [9], and VisIt libSIM [10] have been devel-
oped. Further, a significant amount of research has been done
to develop data reduction techniques for producing reduced
data summaries that can be stored and used as a proxy for
the raw data. Cinema [11] is such an in situ image-based
data reduction and visualization approach. Among other in
situ techniques, compression [12], sub-sampling [13], [14],
and distribution-based summaries [1], [15] are popular. In
this work, we advocate a hybrid approach where we store
the raw data for important key time steps and summarize the
intermediate time steps to achieve sufficient data reduction.

Detection of key time points in a data set is an important
problem for time-varying data analysis. Several approaches
have been proposed for key time step detection for large time-
varying data sets [3], [6], [16]. These techniques generally
allow the detection of key time points and do not offer any data
summarization capability. The computer vision community has
developed several techniques for doing spatio-temporal fusion
of large data obtained from different sources. Pulong and
Kang proposed a technique for data fusion [17]. Nguyen et
al. [18] developed a technique for summarizing large spatio-
temporal images. In a recent work, Shah et al. [19] proposed
an algorithm for real-time summarization of data streams for
smart grid applications.

The use of information-theoretic measures [20], [21] to
solve data analysis and visualization problems is well-known.
Mutual information has been used to perform data regis-
tration [22], [23], view selection [24], and for quantifying
information transfer from data to image space [25]. Various
decomposition of mutual information, called specific mutual
information and pointwise mutual information measures have
become recently popular for fusing multi-modal data [26] and
multivariate sampling [27] for data reduction. For a detailed
review of information theory applications in data analysis and
visualization, interested readers are referred to [28], [29].

III. METHOD

In this work, we propose a new technique for summarizing
a sequence of time-varying scalar fields into a single scalar
field that captures the dynamic temporal evolution of the
data features. The users can study the summary fields to
obtain a comprehensive view of the time-varying nature of the
features. This approach achieves significant data reduction for
the post hoc analysis while preserving the important feature

dynamics of a sequence of time steps. Note that we develop
this algorithm for in situ use cases where we run our algorithm
online when the simulation is running and access the time step
data one by one in a streaming fashion.

A. Data Value Informativeness Quantification

Since the goal is to combine data from a sequence of
time steps, it is important to quantify the informativeness
of each data point so that we can prioritize one data point
over others during the summarization process. In information
theory [20], mutual information (MI) is a well-known measure
that estimates the amount of information overlap between two
random variables and can be formally computed following
Equation 1:

I(Y ;X) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(1)

In Equation 1, I(Y ;X) is the MI between two random
variables Y and X , y ∈ Y represents a specific value of Y and
x ∈ X is a value of X . The joint probability between x and y
is written as p(x, y) and the marginal probabilities of x and y
are p(x) and p(y) respectively. MI for two random variables
computes to a single number reflecting the total shared infor-
mation between X and Y . Since we need information content
of each data value so that we can perform spatio-temporal
data summarization, we focus on a decomposition of MI that
can estimate the information content of each data value of one
variable, while observing values from another variable. Such
decomposition of MI is called specific information.

Specific information measure was first introduced by De-
Weese and Meister [30] and can be formally derived from
Equation 1 as shown in Equation 2 and 3. The specific infor-
mation, called surprise, denoted as I1(y;X) in Equation 3,
represents the informativeness of a data value y when the
whole variable X is observed. Here, p(x|y) represents the
conditional probability of value x given y.

I(Y ;X) =
∑
y∈Y

p(x)
∑
x∈X

p(x|y) log p(x|y)
p(x)

=
∑
x∈X

p(x)I1(y;X),
(2)

I1(y;X) =
∑
x∈X

p(x|y) log p(x|y)
p(x)

(3)

For a data value y, a high value of I1(y;X) indicates that some
infrequent occurrences of x ∈ X have become more probable
after observing the value y from Y , amounting to a surpris-
ing result, hence the name surprise. The value of surprise
(I1(y;X)) is always positive, i.e., I1(y;X) ≥ 0 ∀ y ∈ Y
since it represents the KL-divergence between the distributions
p(X) and p(X|y) [30].

We use surprise as the measure to estimate the informative-
ness of a data value when data values from another time step
are observed. More specifically, if we assume that X and Y
represent the same data variable from time step t and t + 1,
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(a) T=25 (b) T=26 (c) I1field generated using
tornado data at T=25 and 26.

(d) I1field overlapped with
tornado data at T=25

(e) I1field overlapped with
tornado data at T=26

Fig. 1. Visualization of I1field generated using two consecutive time steps of the analytical Tornado data set. Volume rendering technique is used to generate
the visualization results. Figure 1(a) and 1(a) show the vortex region of the Tornado data and Figure 1(c) shows the corresponding I1field. In this illustrative
example, data from T=25 is observed and so the high I1 valued region overlap accurately with the vortex region at T=26 as shown in Figure 1(e).

then we can estimate the informativeness of each data value
at time step t+1 as I1(y;X), by observing the same variable
from the previous time step t. This gives us a way of finding
the highly surprising regions in the data when we compare
it with a previous time step. These surprising regions (i.e.,
regions with high I1(y;X) values) can indicate the regions
where the data features exist.

B. Information Fields

Our primary target application is time-varying 3-D scalar
fields with the goal to summarize a sequence of 3-D scalar
fields into a single scalar field that can provide a compre-
hensive summary of the data features for the selected time
sequence. Such summaries can indicate how the data features
of interest have evolved within the time window and can
also reveal their tracking information. Equation 3 shows how
surprise can be estimated for each data value in variable Y . In
practice, computation of such information theory measures is
done by first establishing a communication channel Y → X
between the variables X and Y as discussed in [26] and
then computing the surprise using the communication channel.
Normalized histograms can be used to estimate probability
distributions while computing the values of I1(y;X). After the
surprise (I1) values are computed, we create a new scalar field
where at each spatial grid point (with data value y ∈ Y ), we
put the corresponding value of I1(y;X). Since such a scalar
field contains information values at each grid point, it can be
called an information field or I1field. The I1field computed
between two time steps can be visualized directly and regions
with high I1 values can be explored as salient regions.

Figure 1 shows an example of an I1field constructed using
two time steps of an analytical Tornado data set. This data set
of dimension 128× 128× 128, contains velocity vectors and
is generated by an analytical function [31]. The data set has
50 time steps and simulates a tornado-like vortex structure.
For this study, we have modified the analytical equation so
that the center of the tornado changes position with time,
creating a moving vortex in the spatial domain. Tracking and
visualizing this vortex is of interest in this data. To detect

the vortex region, we have used the lambda2 (λ2) vortex
criterion [32]. The visualizations shown here are generated
using the Ray-casting-based Volume Rendering technique [33]
from ParaView [34] that allows interactive visualization of 3-
D scalar field data sets. Figure 1(a) and 1(b) show the vortex
at T=25 and T=26 respectively. Even though they look very
similar, the vortex at T=26 has moved slightly toward the left
from its position at T=25. Figure 1(c), presents the I1field
computed at T=26 when the data at T=25 is observed. We
refer to the time step that is the observed variable as the
reference time step. We find that the I1field at T=26 captures
the location of the vortex region accurately. In Figure 1(d)
and 1(e), we superimpose the estimated I1field with the λ2
vortex fields from T=25 and T=26 respectively. Figure 1(d)
shows that the I1field at T=26 captures the slight shift on the
vortex structure and only partially overlaps with the vortex
at T=25, whereas, in Figure 1(e), a complete overlap of the
I1field with the underlying vortex is seen at T=26.

C. Time-varying Feature-based Data Summarization using
Information Fields

The insights obtained from Figure 1 allow us to develop
the idea of time-varying data fusion using I1fields from a
sequence of consecutive time steps. One can imagine that if
we compute the I1fields for every consecutive pair of time
steps, each I1field will assign high values to the statistically
salient regions of the data. Then, if we create a new fused
summary field where at each spatial location, we assign the
data value from the time step where the I1 value is the highest
over the chosen time window, we can combine all the high I1
valued regions from a time window into a single field. Hence,
for each spatial location p, the assigned value is calculated as:

V al(p) = max(It1(p)),∀ t = tstart, .., tend (4)

where tstart and tend represent start and end time steps, It1(p)
is the value of I1 at point p in time t. Conceptually, this
technique will maximize the spatio-temporal information in
the combined field by selecting data points that have maximum
I1 values over the time window. This combined field will
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(a) TDSF for T=1-15 (b) TDSF for T=1-30 (c) TDSF for T=1-50 (d) TSSF for T=1-50

Fig. 2. Demonstration of the proposed spatio-temporal data summarization scheme using a sequence of time steps from the Tornado data set. Figure 2(a),
2(b), and 2(c) show the TDSFs of the Tornado data when time steps between 1-15, 1-30, and 1-50 have been summarized using the proposed algorithm.
In Figure 2(d) we present the TSSF for the Tornado data corresponding to the TDSF shown in Figure 2(c). The colors in Figure 2(d) shows the temporal
evolution of the vortex region over the time window and how it moves gradually from right to left.

capture the time-varying pattern of the data by focusing on
the salient regions with high I1 values.

Since domain scientists primarily want to study the im-
portant features in their data, we devise our summarization
strategy for the feature regions when a domain-specific feature
descriptor is available. This methodology allows the user to
provide a feature descriptor, such as a threshold, and while
performing the temporal summary, we check if the current
data point is a feature and then only summarize such points.
For all the non-feature points in the data, we assign a constant
value to them so that when the summary fields are analyzed
and visualized, the non-feature points can be emphasized less
using volume rendering techniques so that the users can focus
on the evolution of the features without any occlusion from
non-featured regions.

Figure 2 demonstrates this spatio-temporal data summa-
rization scheme using the analytical Tornado data. Fig-
ure 2(a), 2(b), and 2(c) show the volume rendering of the
summary fields when 15, 30, and 50 time steps of Tornado data
are summarized into a single field. These summary fields are
denoted as the temporal data summary field (TDSF). It is seen
that these TDSFs can capture the evolution of the vortex in
Tornado data as the vortex moves from right to left. To capture
how the TDSFs are generated and associate each part of the
TDSF with its relevant time step, we also generate another
field, the time step summary field (TSSF). For each spatial
location, the TSSF assigns the time step number from which
the data (with the highest I1 value) is selected. Figure 2(d)
shows the TSSF for Tornado data that corresponds to TDSF
at Figure 2(c). The colors in Figure 2(d) reflect the time steps
and, using a colormap that naturally delineates bands, we can
see that the vortex moves from right to left over time as the
color changes from blue to red.

By exploring the TDSF and TSSF together, users can
get a comprehensive view of the evolution of the vortex in
the Tornado data without needing to inspect each time step

individually. Disk storage can be significantly reduced by
retaining the raw Tornado data at T=1 (initial time step) and
T=50 (final time step) while keeping the TDSF and TSSF
fields as a replacement for all the 48 intermediate time steps.
We observe that the storage for the raw Tornado data is
489MB, whereas the proposed technique will only take 40MB
disk space, achieving approximately 92% storage reduction.
Using this technique, we can generate temporal summary fields
(TDSFs and TSSFs) for sequences of time steps, retaining
raw simulation data for the start and end time steps of each
sequence along with the corresponding TDSFs and TSSFs for
achieving sufficient data reduction.

IV. IN SITU APPLICATION STUDY

A. Application Background
In this section, we apply our algorithm in situ to a data

set generated from a large-scale computational fluid dynamics
code, MFIX-Exa [35], [36], which is being developed at the
National Energy Technology Laboratory (NETL). MFIX-Exa
generates particle-based data to study the working principles
of chemical looping reactors (CLR). Such reactors contain
fluidized beds where particles interact and, under certain phys-
ical conditions, bubbles (void regions) are formed. The study
of the dynamics and interaction of such bubbles is critical
since the formation of large, fast-moving bubbles in fluidized
beds can cause poor gas/solid mixing, lowering the conversion
efficiency and stability of the reactor. Data produced from an
MFIX-Exa run can contain millions of particles per time step
and thousands of time steps, needing terabytes to petabytes
of storage. As a consequence, storing all the raw particle data
for a post hoc analysis will be prohibitive. To address this
need, we have deployed our proposed algorithm in situ and
generated bubble-based summarization fields so that the raw
particle data are not required to be stored at each time step,
thereby significantly reducing the overall storage needs.

To perform in situ analysis using MFIX-Exa, custom code is
added to MFIX-Exa code bases. Our in situ code is developed

4



IEEE International Conference on Big Data 2021

in C++ and uses the VTK [37] library for data processing.
We have developed an in situ adapter function that directly
accesses the raw particle data. As the simulation code and
our in situ algorithm run on the same memory and computing
resources, this in situ integration works in synchronous mode,
tightly coupled with the simulation code.

B. In Situ Algorithm for Streaming Data

Since MFIX-Exa produces particle fields, we first convert
it to a scalar particle density field. To estimate the particle
density, we create a spatial 3-D histogram using particle
locations. As the bin frequencies of this 3-D histogram reflect
the number of particles in a local region of the domain, we
convert this 3-D spatial histogram into a regularly structured
grid data where the number of histogram bins translates to the
spatial dimensions of the structured grid and the bin frequency
values are interpreted as particle density at each grid point.

A threshold on these particle density fields can be used
to segment the bubbles. The MFIX-Exa domain scientists
want to understand these complex bubble interactions while
evaluating their computational model. The interesting time
points for this simulation are when relatively larger bubbles
undergo a merge/split event. However, since the simulation
data gradually evolves over time and such events do not
happen at each time step, this is an ideal use case for our
approach. In this case, the sequence of time steps between
merge/split events can be summarized into a fused field. To
preserve the raw particle data at the key time steps when
a merge/split event happens, we first segment the density
field and count the number of segments where each segment
indicates a bubble. For the next time step, if the number
of segments remains the same as the previous time step
– indicating no merge/split has happened – we apply our
summarization algorithm to fuse all such intermediate time
steps. When the count of the bubbles changes, the algorithm
outputs the summarized TDSF and TSSF at that time step and
also stores the raw particle data, re-initializes the TDSF and
TSSF, and continues the process from the next time step.

The algorithm uses a threshold value to segment and detects
the bubble regions (regions ≤ TH) while generating the
summarized fields. In the in situ environment, we only have
access to one-time step at a time, requiring modifications to the
methodology. Since the size of the estimated particle density
field is quite small, we keep the particle density field from the
previous time step in memory. The joint histogram computa-
tion needed to compute the surprise (I1) values requires two
sequential time steps. We also initialize TDSF and TTSF as
global data objects. At each new time step, for every spatial
location, if the value of I1 is higher than the current value, we
update the data value at that location with the data value from
the current time step and also update the time step number with
the current time step number for the same spatial location in
the TSSF. This process incrementally constructs the TDSF and
TSSF for a sequence of time steps in the in situ setting. Once
the bubble count changes, we output the current TDFS, TSSF,
and the particle raw data and reinitialize the TDSF and TSSF

(a) Density field at T=25090. (b) TDSF for T=25090-25340.

(c) Density field at T=25340. (d) TSSF for T=25090-25340.

Fig. 3. In situ application study results of the proposed method when run
with the MFIX-Exa simulation. Figure 3(a), and 3(c) show the particle
density field from T=25090 and 25340 respectively. The bubble features are
observed with dark blue regions. The TDSF generated for the intermediate
time steps (T=25090-25340) is provided in Figure 3(b) and the corresponding
TSSF is shown in Figure 3(d). We find that the TSSF is able to provide a
comprehensive summary of all the bubbles within this time window and as
two bubbles (two bubbles at the center left of Figure 3(a)) merge at T=25340,
the bubble count changes at T=25340 and the proposed technique outputs
summary results.

using the values from the current time step. This algorithm
can run continuously with the simulation and produce TDSFs
and TSSFs for sequences of time steps when the bubble count
remains the same. Hence, this method adaptively stores key
time steps from the MFIX-Exa simulation and summarizes the
intermediate time steps.

C. Analysis Results

We have tested the effectiveness of our method by running
it in situ with the MFIX-Exa simulation. The simulation test
case represents a scenario where a constant density, constant
viscosity gas is used to fluidize spherical particles of uniform
radius. The fluidized bed has a constant velocity gas inlet at the
bottom of the bed and the simulation contains approximately
4.1 million particles. We have run this simulation for 6000
time steps starting from a previously stored checkpoint file at
T=25000 to reach the point when bubbles are already forming.
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In Figure 3, we show the results of in situ data summa-
rization for one of the time windows, with start time step
25090 and end time step 25340. Figure 3(a) and 3(c) show the
estimated density fields at T=25090 and T=25340 respectively.
We observe that the bubbles (dark regions with low particle
density) have evolved. To focus the analysis only on the
bubble regions, we have used the density threshold=12 for
segmenting the bubbles. Also, since the state of the bubbles
changes very slowly between two consecutive time steps, we
call the in situ routine at every 10th time step. Furthermore,
since the domain experts are more interested in the evolution
of larger bubbles, in this study, we only count the number of
bubbles containing more than 750 connected grid points. In
Figure 3(b) and Figure 3(d), we present the TDSF and TSSF
for this window that show the evolution of the bubbles for this
intermediate time steps. Note that at T=25340, two bubbles
merge (the bubbles at the center-left of Figure 3(a)) and as a
result, the number of bubbles changes. To preserve this time
step as one of the key time steps, our technique outputs the
raw particle data along with the summarized TDSF and TSSF
for the time window T=25090-25340. For the entire in situ
run of 6000 time steps, our method identified 54 key time
points, summarizing the intermediate data for each pair of
consecutive key time steps between key time points. These
results demonstrate the usefulness of the proposed method
for analyzing and summarizing large-data sets in situ where
we can access the simulation data at a much higher temporal
frequency, bypassing the expensive disk I/O.

D. Storage Savings and Computational Performance

The in situ studies were done in the cluster Cori at
the National Energy Research Scientific Computing Center
(NERSC). NERSC is one of the primary high-performance
scientific computing facilities for the Office of Science in the
U.S. Department of Energy. Cori is a Cray XC40 system,
capable of achieving a peak performance of about 30 petaflops.

For this study, the raw particle data is stored using PLOT
FILE format containing particle ids, particle locations, and
their velocities. We ran 6000 time steps of the simulation.
The proposed method stored 54 key time steps with the TDSFs
and TSSFs. The spatial dimension of the generated TDSFs and
TSSFs are 128× 16× 128 and are stored in VTK format. We
find that the proposed method needs 16.03 GB storage, while
if we store all the raw data for every 10th time step, then we
would require 170 GB storage. Hence the proposed method is
able to reduce approximately 91% disk storage.

In Table I, we provide the in situ computational performance
of our technique. Typically, when an in situ analysis is
performed, it is desirable that the in situ processing takes
only a small additional fraction of the simulation time. Our
study is run using 1024 processors and it is observed that
the in situ processing time is significantly smaller compared
to the simulation time. Also, from the fifth and sixth column
of Table I, we observe that the in situ I/O, which includes
timings for storing the raw data for key time steps and the
TDSFs and TSSFs, is significantly smaller compared to the

TABLE I
COMPUTATIONAL PERFORMANCE FOR THE IN SITU APPLICATION STUDY

USING MFIX-EXA SIMULATION.

No. of
processors

Simulation
(mins)

In situ
processing

(mins)

Simulation
raw I/O
(mins)

In situ I/O
(mins)

MFIX-Exa Case
(∼4.1M particles,
6000 time steps)

1024 553.05 24.37 72.7 2.26

raw data I/O if we store the particle data at every 10th time
step to conduct similar analysis offline. In addition, we also
measure the timings if our algorithm is executed post hoc and
found that the post hoc disk I/O takes 246.27 minutes, which
is significantly higher compared to the in situ I/O. However,
by processing the data in situ, we are able to bypass this slow
post hoc I/O. Therefore, by performing in situ analysis, the
proposed method saves both the storage and computational
time while enabling flexible post hoc analysis.

V. CONCLUSION & FUTURE WORKS

In conclusion, we have presented an in situ technique for
summarizing large-scale spatio-temporal data sets to reduce
the size of the output data significantly while preserving the
important state of the features. The proposed method detects
key time steps based on a suitable user-provided criterion
and fuses data between every pair of key time steps into a
summarized data set. Finally, the summary data sets are stored
along with the raw data from the key time steps so that they
can be analyzed and visualized during post hoc exploration.
We verify the efficacy of our method by conducting an in situ
study with a large-scale simulation.

In the future, we plan to develop criteria for detecting key
time steps that will not need any domain knowledge so that key
time steps can be detected in a purely data-driven way which
will make the algorithm applicable across a wide range of
scientific data sets. We also wish to run a GPU implementation
of this technique with a larger case of MFIX-Exa to study the
computational performance further.
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