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As we move towards the exascale computing era, the necessity of effective, scalable,
and flexible data reduction techniques is becoming more and more prominent. This
is primarily due to the bottleneck stemming from output data size and I/O speed
compared to the ever-increasing computing speed as discussed. Therefore, data
summarization techniques are needed that can work in the in situ environment,
while the data is getting produced, and preserve the important information from
the data compactly which will minimize information loss and enable a variety of
post hoc analyses. The motivation for developing novel and effective data reduction
techniques is discussed in the introductory chapter in detail. In this chapter, statistical
distribution-based in situ data summaries are shown to be a pragmatic solution in this
respect and is able to preserve important statistical data features. Using only the in situ
generated statistical data summaries, which is significantly smaller in size compared
to the original raw data, a wide range of data analysis and visualization tasks can
be performed such as feature detection, extraction, tracking, query-driven analysis,
etc. Besides these, when necessary, the full-resolution data reconstruction is also
possible to visualize the data in its entirety with the added advantage of uncertainty
quantification. In this part of the chapter, several distribution-based data modeling
algorithms are presented along with their in situ performances and demonstrate the
usefulness of the distribution data summaries through several application studies.
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1 Statistical Distribution Models for Data Summarization

Probability distributions are well known for capturing various statistical properties
of data sets. Furthermore, since the distributions are capable of representing a large
set of data samples in a compact format, it has been used successfully for modeling
scientific data sets and as a result, different types of distribution-based data sum-
maries are proposed as a means of reduced data representation. Before we go into
the details of modeling large-scale simulation data using distributions, let us first
briefly discuss several statistical distribution representations that have been used in
the data science and visualization community for summarizing large-scale data sets.
Distribution-based modeling techniques can be classified into two broad categories:
(1) Non-parametric distribution models; and (2) Parametric distribution models.
Histogram and Kernel Density Estimators (KDE) are popular non-parametric distri-
bution models used extensively in the visualization community, whereas, parametric
distributions such as Gaussian distributions, Gaussian Mixture Models (GMM) are
also found to be very effective in data analysis. In the following, we briefly introduce
the most popular distribution models that are used in various in situ applications and
discuss their advantages and disadvantages in the in situ context.

1.1 Non-parametric Distribution Models

Given a set of discrete data samples {x;}, a non-parametric distribution in the form
of a histogram can be formally defined as:

H(s) =) 8(x = xi) (1)

where ¢ is the Dirac delta function defined as:

5 = {1, ifx=0 @

0, otherwise

The area under a histogram can be normalized, and such histograms are often used
as a discrete probability distribution function. Another well known non-parametric
distribution model Kernel Density Estimator (KDE) is defined as:

X —X;
)

1 n
f(x)=%;K( 3 (3)

where f(x) denotes the probability density at x, n is the number of data samples,
b (> 0) is the bandwidth, a smoothing parameter, and K(-) is the non-negative
kernel function. A range of kernel functions such as uniform, triangular, Gaussian,
Epanechnikov kernels can be used for estimating data density.
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1.2 Parametric Distribution Models

Compared to the non-parametric distribution models, parametric distribution models
offer a more compact distribution representation, since, only the parameters of the
models are sufficient to represent the distribution model. The use of parametric
Gaussian distributions for data modeling is widely known across various scientific
domains. However, the assumption of the normality of data is not always true and
can introduce modeling inaccuracies. Gaussian mixture models (GMM) removes this
assumption of normality by modeling the data as a convex combination of several
Gaussian distributions. The storage footprint for a GMM consists of the parameters
of the Gaussian distributions and their weights. Formally, the probability density
p(X) of a Gaussian mixture model for a random variable X can be written as:

K
p(X) = > wix N(Xlpi, 07) @

i=1

where K is the number of Gaussian components. w;, u; and, o; are the weight,
mean, and standard deviation for the " Gaussian component respectively. Note that
the sum of weights in the mixture, Zfi | w; is always equal to 1. The computation
of parameters for the GMMs is typically done by Expectation-Maximization (EM),
which uses an iterative approach to maximize a likelihood function [5]. For an
approximate and computationally efficient estimation of parameters of a GMM, an
alternative incremental estimation scheme is also available [32, 35] which can satisfy
the need of fast-processing in the in situ environment.

1.3 Advantages and Disadvantages of Different Distribution Models in
the Context of In Situ Data Reduction

To use distributions as a viable solution for performing in situ data summarization,
several constraints need to be discussed. Any in situ data analysis algorithm is ex-
pected to be computationally fast so that it does not stall the underlying scientific
simulation, and also the additional memory requirement should be as small as pos-
sible. In this context, the computation time for the non-parametric model histogram
is low as it only requires a scan of data values and counting the frequencies of
discretized data values by converting them into bins. However, the storage require-
ment of histograms is not always small since the frequency of each bin needs to
be stored. Furthermore, if summarization is done for multivariate data, then the
storage footprint of high-dimensional histograms increases exponentially. The other
widely used non-parametric model KDE is computationally more expensive than
histograms. Compared to the non-parametric models, the storage requirement of the
parametric distributions is always small since only the model parameters are stored.
While computation time for estimating parameters for a Gaussian distribution is
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low, estimation of model parameters can be expensive at times for high-dimensional
parametric distributions such as Gaussian mixture models. Therefore, instead of us-
ing the traditional Expectation-Maximization (EM) algorithm all the time for GMM
parameter estimation, a faster and approximate incremental mixture model estima-
tion algorithm has been explored for in situ GMM-based data summarization [12].
Another important point is that using only one type of distribution model for all the
data may not be the optimal modeling strategy. For example, based on the statistical
properties of the data, different distribution models might be suitable at different re-
gions of the data. Therefore, a hybrid distribution-based data summarization would
be possible where based on various statistical tests, the most suitable distribution
models will be used for summarization [22, 21]. In the following, we briefly discuss
various statistical tests that can be done to pick the most suitable distribution model
for data summarization.

1.3.1 Various Statistical Tests for Picking the Suitable Distribution Model

Depending on factors like initial data size, type of post hoc analyses targeted and/or in
situ computational complexity involved, both parametric and non-parametric mod-
els have distinct advantages and disadvantages. The choice of suitable distribution
model, therefore, plays an important role in determining the efficiency of distribution-
based in situ data summarization strategies. Many standard statistical tests currently
exist to decide which distribution model can best represent the underlying data. How-
ever, often a single test may not be enough to address all the concerns and trade-offs
associated with a real-world in situ scenario. Therefore, users have to carefully de-
sign their tests based on their requirements. Depending on the application and scale
of operation, the task of selecting a distribution model can be as simple as graphical
validation of the shapes of distributions to as complex as solving an optimization
function with desired requirements as the function variables. Here, we put forward
some of the most commonly used practices prevalent in the field of Statistics and
Visualization.

Normality Test: One of the simplest, yet effective statistical test that can be
performed is to check for Gaussian/normal behavior in the data distribution. Studies
have shown that for the same sample size, Shapiro-Wilk test [33] is the most powerful
(i.e, statistical power') normality test [31]. It returns a likelihood value, commonly
referred to as pValue, which lies between 0 and 1. Small pValues lead to the rejection
of the normality hypothesis, whereas, a value of 1 ascertains normality with high
confidence. A pValue in the range of [0.05,0.1] is often considered as a good
threshold value to decide normality. For data not satisfying this threshold further
evaluations need to be done to find a more suitable distribution model.

Goodness-of-fit Test: Normality tests do not offer a means to evaluate the best-
fitted distribution model for the underlying data out of possible candidate models.
Kolmogorov-Smirnov (KS) test [36], a type of goodness-of-fit test, is a more generic

U Statistical power of any test is defined as the probability that it will reject a false null hypothesis.
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platform for such comparative validation. It compares the CDF of distribution against
the empirical CDF (ECDF) of data. Goodness-of-fit is decided by how close the CDF
of a distribution is to the ECDF. If F(x) represents the CDF of the hypothesized
distribution and F, (x) represents the ECDF, then the KS test measure is given as,

K = supy|F(x) = Fe(x)]| (5)

Unlike many other statistical tests, the KS test can evaluate the goodness of both
parametric and non-parametric distributions at the same time.

Bayesian Information Criterion: Bayesian Information Criterion (BIC) [16] is
a commonly used metric for selecting among a finite set of parametric models. It is
based on the log-likelihood of a given model on the sample data. It is defined as,

BIC = -2L, + plog(n) (6)

where n is the sample size, L, is the maximized log-likelihood of the chosen model
and p is the number of parameters in the model. A low BIC value indicates a better
model. BIC attempts to address the risk of over-fitting by introducing a penalty term
p log(n), which grows with the number of parameters. Therefore, the BIC score is
designed to avoid overly complicated models (i.e, with a large number of parameters),
which is ideal for distribution-based in situ data summarization approaches. The BIC
test is often used for finding out the correct number of Gaussian distributions that
would best fit a sample while modeling using a Gaussian mixture model [37, 38].

2 In Situ Distribution-based Data Summarization Techniques

One of the primary advantages of using distribution-based summaries is that the
distributions can capture various statistical properties of the data robustly in a com-
pact format. Therefore, in the absence of the full resolution raw data, during the post
hoc analysis, a variety of data analysis and visualization tasks can be carried out us-
ing such distribution-based data. Furthermore, while the generated results will have
uncertainties as the full resolution data is not available, distribution-based data sum-
maries will allow uncertainty quantification for the produced results for conveying
uncertainty information to the application scientists.

While modeling scientific data sets using distributions, one can use a global
distribution for the whole data domain. For example, a one-dimensional histogram
can be used to model a data variable in a data set. In this case, the histogram will
be able to answer questions regarding the likelihood of specific values of the scalar
field in the data [20, 13, 6], but will not be able to answer questions such as where
are those specific values occurring in the domain. This is because the global data
distribution is only a coarse statistical summarization of the complete data domain
and does not capture any spatial information. Hence, even though significant data
reduction using global distribution models can be achieved, still, the applicability
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Fig. 1: Illustration of Local and Global distribution-based data modeling schemes.
This image is reprinted from our previous work [11].

and flexibility of such global distribution-based data summaries during the post hoc
analysis phase is minimal.

In contrast, to capture the data properties in much finer detail for enabling detailed
visual analysis, local region-based distribution modeling techniques have shown
great success. In this case, the data domain is first divided into smaller regions/blocks
and then a suitable distribution is used to model the data for each region. In this way,
even though the storage footprint increases compared to the global model, but, such a
local model-based summarization can capture the statistical properties of the data in
much more detail compared to the global distributions. In the following, we introduce
different schemes of in situ local distribution-based data summarization in detail.

2.1 Local Distribution-based In Situ Data Summarization

As discussed above, the local distribution-based summarization techniques divide
the data domain into smaller regions and then use suitable distribution models to
reduce the data at each local region. If variables are summarized individually, then
univariate distribution models are used. When relationships among multiple vari-
ables are required to be captured in the distribution-based data summaries, multiple
variables are summarized together using multivariate distribution modeling tech-
niques. Whether univariate modeling is sufficient or multivariate data summaries
are needed depends on the specific application tasks. As an in situ data summa-
rization technique, while the univariate distribution-based modeling has its own
challenges, multivariate distribution-based modeling techniques are significantly
more complex as both the computation cost and storage footprint increases signif-
icantly. Therefore, sophisticated distribution modeling schemes are often preferred
over standard multivariate distribution-based modeling techniques to address such
issues. In the next section, we first discuss various local distribution-based univariate
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data summarization techniques and then introduce multivariate data summarization
schemes.

2.1.1 Distribution-based Summarization for Univariate Data

Individual data variables can be summarized compactly using univariate distribution-
based models such as univariate histograms, Gaussian distributions, GMMs, etc. An
important advantage of using the local region-based modeling approach is that it
allows modeling of the local statistical properties of the data in detail and therefore,
the generated distribution data summaries are flexible and can address a wide range
of analysis and visualization tasks in the post hoc exploration phase. Firstly, the
data domain is divided into smaller sub-regions (data blocks), and then the desired
data variables in each region are summarized using separate univariate distribution
models. Finally, all the region-wise distributions are stored into the disk for post hoc
analyses.

A straightforward scheme of data domain decomposition used in the literature
is regular non-overlapping blocks-wise partitioning. Regular partitioning based data
decomposition is computationally less expensive as well as storage efficient. How-
ever, since regular partitioning does not consider any data properties, the resulting
distribution-based models generated from the data at each partition often show high
value variance, and consequently high uncertainty. Furthermore, the distribution
summaries only capture the statistical properties of the data values and the spatial
organization of such data values inside each block is not preserved in the univariate
distribution. Therefore the naive regular partitioning scheme is limited in application
in the post hoc analysis phase. To remedy this issue and capture spatial information
from the local univariate distribution-based data summaries, two approaches can be
taken: (1) By augmenting the spatial distribution information directly to the regular
block-wise data summaries; (2) Instead of using regular partitioning, irregular parti-
tioning schemes can be used where spatially contiguous similar data values will be
grouped and the distribution-based analysis error will be reduced. Below we briefly
present these two approaches.

» Spatial Distribution-augmented Statistical Data Summarization An explicit
approach of capturing spatial information into the distribution-based data sum-
maries is the direct augmentation of spatial distribution data summaries with the
value distribution based data summaries. In this case, the data is still partitioned
using regular blocks. Then, for a selected data variable that needs to be sum-
marized, the data values of each partition first summarized using a value-based
histogram as shown in Figure 2 (the pink box). Now, to incorporate the spatial
information to this value distribution, a spatial Gaussian mixture model (GMM)
is estimated for the data points in each histogram bin. For each bin of the value
histogram, the data points are identified and then using their spatial locations, a
multivariate GMM, termed as spatial GMM, is estimated. Each histogram bin is
associated with its unique spatial GMM. While estimating the spatial GMMs, the
suitable number of modes for each spatial GMM can be identified by applying
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Fig. 2: This diagram shows the steps used to compute the spatial GMM for a raw
data block (shown in blue). Besides the computation of the value distribution, the
raw data in the block is used to construct the Spatial GMM. First, the locations of the
data samples are collected into the corresponding bin interval according to the data
value at that location (shown in the bottom left). Then, a Spatial GMM is constructed
(shown on the right) for each bin interval using the locations in the interval (illustrated
here for Bing). This image is reprinted from our previous work [37].

Bayesian Information Criterion (BIC) as has been illustrated in Figure 2. There-
fore, for each data block, using this approach, a value histogram and a set of
spatial GMMs are stored as the reduced summary data.

Exploration using this spatial GMM augmented distribution-based data sum-
maries is done post hoc. While inferring the data value at a queried location,
information from the value histogram and the spatial GMMs are combined using
Bayes’ rule. Bayes’ rule is a popular theorem that is widely used in classifica-
tion problems. It tells us how to augment the known information with additional
evidence from a given condition. In this case, the block value distribution is the
known information and the additional evidence are the probabilities from each
Spatial GMM at the queried location. More details of this technique can be found
in [37].

* Homogeneity-guided Data Partitioning and Summarization A second implicit
approach for capturing the spatial information in distribution-based modeling and
reducing error during post hoc analysis is the use of irregular data-driven parti-
tioning techniques. Naive regular partitioning of data domain does not consider
data continuity, and as a result, produces partitions with high data value variance.
When distributions are used to reduce such partitions, the resulting distribution
models contain high data value variance. Consequently, post hoc analysis using
such distribution summaries produces high sampling error leading to increased
uncertainty. Therefore, to reduce the data value variation in the partitions, a su-
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(a) Regular block-wise par- (b) SLIC-based partition-
titioning. ing.

Fig. 3: Different types of data partitioning schemes. This image is reprinted from
our previous work [11].

pervoxel generation algorithm SLIC (Simple Linear Iterative Clustering) [2] is
used. SLIC is a computationally efficient variant of the local K-means clustering
algorithm and produces spatially connected data clusters, which are homogeneous
in nature. Each SLIC cluster/supervoxel is treated as a local data partition and
is summarized using an appropriate distribution model. Since the data are parti-
tioned into near homogeneous regions, using normality tests often it is found that
a single Gaussian distribution is sufficient to capture the statistical data properties
of each partition. When a single Gaussian is not sufficient, a GMM can be used
for summarization. A detailed description of this hybrid distribution-based in situ
data summarization scheme can be found in [15].

Compared to the traditional K-means clustering, SLIC adopts alocal neighborhood-
based approach, where similar data points within a local neighborhood are
grouped into one cluster. During the optimization stage, from each cluster cen-
ter, distances only to the points in the predefined neighborhood are compared.
This reduces the total number of distance computations significantly by limiting
search in a local neighborhood. As a result, the algorithm performance is boosted
significantly. Furthermore, SLIC uses a weighted distance measure that provides
contributions from both the spatial locality of the data points and their scalar
value similarities. The distance measure can be defined as:

D@, j)=p"llci=pjll+ (1=p)-|val; = valj| (7

Here, ¢; is the location of the cluster center i and p; is the location of point
J. val; and val; are the data values at i'" cluster center and j'* data point
respectively. The mixing weight 8 is configured based on the importance of
spatial vs value components, such that 0 <= 8 <=1, and 8+ (1 — ) = 1. Smaller
values of g will give higher weightage on the difference of data values than their
spatial locations. Due to these properties, SLIC partitions the data domain into
smaller sub-regions where each partition contains points which are: (a) spatially
as contiguous as possible; (b) homogeneous in value domain. In Figure 3b, we
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show an illustrative example of the SLIC algorithm applied on a 2D data. As
can be seen, SLIC partitions similar valued data points along non-axis aligned
boundaries compared to the regular partitioning scheme shown in Figure 3a.

2.1.2 Distribution-based Summarization for Multivariate Data

Many times, scientific simulations are designed to measure multiple physical vari-
ables/attributes (like pressure, temperature, precipitation, etc.) at the same time.
These variables are used to perform various multivariate analyses to gain in-depth
insights into the underlying physical phenomenon. Therefore, instead of modeling
individual variables as independent univariate distributions, it is often necessary to
model them together as multivariate distributions in order to preserve the variable
inter-dependence. However, the benefits of distribution-based data summarization
are not always readily applicable when using standard multivariate distributions. Un-
like their univariate counterparts, it becomes increasingly difficult to work with the
corresponding standard multivariate distribution representations when the number
of variables (i.e, dimensionality) increases. In this section, we discuss the challenges
associated with multivariate distribution-based data summarization and pragmatic
solutions to address them.

* Multivariate Histogram. Compared to univariate histograms (Section 1.1), com-
puting and storing multivariate histograms is a non-trivial task. The storage foot-
print of a multivariate histogram can increase exponentially with the number of
variables and the desired level of discretization (i.e, number of bins). This makes
them ineffective for the purpose of in situ data reduction. Sparse representations
of the multivariate histograms can be constructed to bring down the exponen-
tial storage cost [29]. Based on the sparseness of the multivariate histogram,
the large multi-dimensional array can be transformed into a much smaller size.
This transformation, encoded with dictionary-based data structures, can be used
to map the transformed multi-dimensional array back to the original array. To
further reduced the storage overhead, the multivariate histogram can be stored as
a sequence of the index and frequency pairs where the indices are represented as
bitstrings computed from a space-filling curve traversal of the multi-dimensional
array. However, such sparse representations are sensitive to how the data is dis-
tributed and the number of histogram bins used. Therefore, despite cutting down
the exponential storage cost of multivariate histogram representations, they are
not always effective for data reduction when compared with the original size of
the raw data.

e Multivariate GMM. As discussed in Section 1.2, because of their compact rep-
resentation and good modeling accuracy, univariate GMMs are frequently used
for distribution-based data summarization. Their multivariate counterparts can
also be represented by Equation 4 above, with multivariate Gaussian kernels
instead of univariate Gaussians. However, the estimation of multivariate GMM
using Expectation-Maximization is computationally expensive compared to the
univariate GMMs. The computation time and model complexity increase rapidly
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with the number of variables. As a result, the in situ estimation of multivariate
GMMs will only add to the overall simulation execution time for large-scale simu-
lations. This can overshadow the advantages of data reduction and I/O bottleneck
alleviation for distribution-based data summarization.

¢ Copula-based Multivariate Distribution Modeling. Given the challenges as-
sociated with standard multivariate distribution models, it is important to take a
fresh look at modeling multivariate distributions for in situ analysis. One such
way is to use copula functions [22]. Copula functions offer a statistically robust
mechanism to decouple the process of multivariate distribution estimation into
two independent tasks: univariate distribution estimation and dependency model-
ing. As aresult, the exponential cost of storage and/or distribution estimation time
can be reduced significantly because we can independently model the individual
variables using arbitrary univariate distribution types, while the copula function
captures the dependency among them separately.
A copula function is a multivariate distribution function, whose univariate
marginals are standard uniform distributions. In terms of cumulative density
functions (CDF), C : [0,1]¢ — [0, 1] represents a d-dimensional copula (i.e.,
d-dimensional multivariate CDF) with uniform marginals. Sklar’s theorem [34]
stated that every joint CDF in R¢ implicitly consists of a d-dimensional copula
function. If F is the joint CDF and F, F», ...F4 are the marginal CDF’s for a set of
d real valued random variables, X1, X», ...X; respectively, then Sklar’s theorem
can be formally represented as;

F(x1,x2..xq) = C(F1(x1), F2(x2), ...Fq(xq))

= C(uy,up, ...uqg) (using F;(x;) =u; ~UJ[0,1]) ®

where, the joint CDF F is defined as the probability of the random variable
X; taking values less than or equal to x;. Therefore, to model any multivariate
distribution using a copula-based strategy, we need the following two sets of
information.

1. Univariate marginal distributions of the individual variables (i.e, F;’s).
2. A copula function that captures the dependency among the variables (i.e, C).

Copula-based multivariate distribution modeling techniques generally approxi-
mate the function C(.) using standard copula functions [30]. One such popular
copula function is the Gaussian copula, which is derived from a standard multi-
variate normal distribution. For the purpose of data reduction, the Gaussian copula
is ideal because it requires the storage of only the correlation matrix, which can
be efficiently computed in an in situ environment. Using this flexible multivariate
distribution modeling approach, for each local region, we can store the multivari-
ate data summaries (comprising of univariate distributions and a copula function)
to achieve multivariate relationship-aware in situ data reduction. Figure 4 provides
a schematic overview of a copula-based in situ multivariate data summarization
workflow. The summaries can be utilized to carry out various multivariate post
hoc analyses.
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Fig. 4: Overview of a copula-based in situ multivariate data summarization workflow.
Multivariate data summaries are created in situ using Gaussian copula functions. The
summaries can be utilized later to perform different multivariate post hoc analysis
and visualization tasks. This image is reprinted from our previous work [22].

(a) Distribution similarity- (b) Distribution similarity- (c) Distribution similarity-
based identified feature using based identified feature using based identified feature using
regular block partitioning. K-d tree based partitioning. SLIC-based partitioning.

Fig. 5: Distribution data-driven probabilistic feature search using SLIC-based data
summaries in Vortex data set. This image is reprinted from our previous work [15].

3 Post hoc Visual Analyses Using Distribution-based Data
Summaries

One of the primary requirements of any in situ data summarization technique is to be
flexible during post-hoc analysis so that a variety of visualization and analysis tasks
can be performed using it. Since data analysis algorithms are often constrained by
storage and computation cost in the in situ environment, a majority of the exploration
tasks are still preferred to be done post hoc by the application scientists where they
can refine the analysis results interactively, change search criteria as new information
is learned, and visualize the data on demand. In this section, we discuss how the
various types of aforementioned in situ distribution-based data summaries can be
used to enable a wide range of analyses tasks in the post hoc exploration phase.
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Fig. 6: Distribution-based feature similarity field visualization using spatial GMM
based data summaries in Turbulent Combustion data set. This image is reprinted
from our previous work [37].

3.1 Stochastic Feature Analysis

Analysis and visualization of various scientific features in the simulation data
sets is one of the primary tasks that application scientists perform routinely. The
distribution-based data summaries can be used to carry out this task robustly. By
representing the user specified target features in the form of a distribution, such
feature can be searched in the distribution-based data summaries and the features
can be extracted and visualized. Feature extraction can be done by matching the
target feature distribution to the in situ generated distributions of the local regions
and all the regions with a high similarity can be explored interactively. In Figure 5
an example of distribution-based feature extraction is shown. This example uses the
homogeneity-guided SLIC-based data partitioning scheme and the data for SLIC
partitions is summarized using univariate GMM-based modeling. As can be seen
in Figure 5c, the SLIC-based data summaries are able to model the data accurately
and hence the extracted features does not have discontinuity and artifacts which are
visible from the results generated using the naive regular partitioning scheme (Fig-
ure 5a), and also in the K-d tree based partitioning scheme (Figure 5b). More results
and a comprehensive quantitative study of this technique can be found in [15].

Another example of post hoc feature exploration using the spatial distribution
augmented data summaries is shown in Figure 6. Given a target feature, a new
feature similarity field is generated where the high valued regions are highlighted
as the regions of interest. The true similarity field is shown in Figure 6a, which is
generated using the ground truth raw data for comparison purposes. Figure 6b shows
the similarity field generated using regular block-wise partitioning and GMMs are
used as the distribution model. Finally, Figure 6¢ depicts the feature similarity field
resulted from spatial GMM augmented data summaries. As can be seen that the
spatial GMM based data summaries produce the most accurate feature similarity
field with minimal artifact [37].
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Fig. 7: Selected feature in Vortex data set, a zoomed in view and the GMM of the
selected region. This image is reprinted from our previous work [14].
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Fig. 8: Extraction and tracking using Vortex data set. Tracked feature for 4 selected
time steps are displayed. This image is reprinted from our previous work [14].

3.2 Feature Extraction and Tracking

Feature tracking in scientific data sets is an important task. Application scientists
are often interested in extracting and tracking the temporal evolution of scientific
features (a region of interest) such as vortex cores, hurricane eye, eddies in ocean etc.,
to learn about the temporal development of various physical phenomenon in detail.
The proposed distribution-based data summaries can be used to track such scientific
features robustly over time. In this study, a regular block-wise distribution modeling
is used where parametric distribution Gaussian mixture model is used to model the
data for each local block. Since features in scientific simulations are often hard to
be defined by a precise descriptor, a value-based distribution is used to represent
the target feature. Finally, using stochastic similarity measures and extracted motion
information from the distribution-based data summaries, the feature is extracted and
tracked over time robustly. More details of this distribution-driven feature tracking
algorithm be found in [14].

In Figure 7, target feature selection in the form of a GMM is displayed where user
can highlight a region of interest using an interactive box filter. The feature shown



In Situ Statistical Distribution-based Data Summarization and Visual Analysis 15

\ -y

‘ Prob

\ ‘\‘. P
-~ (‘/ 205

lU 00

(a) Ground truth (b) Probability field

Fig. 9: Multivariate query-driven analysis of Combustion data set for the query
0.3 < mixfrac < 0.7 and y_oh > 0.0006. This image is reprinted from our
previous work [22].

here is a vortex core in a pseudo-spectral simulation of coherence vortex structures.
The tracking results of this feature is provided in Figure 8 where the tracked vortex
feature is shown for four different time steps. Note that, even though the shape of the
feature changes over time, still the tracking algorithm is able to extract and track the
feature robustly in future time steps.

3.3 Multivariate Query-driven Analysis and Visualization

Query-driven analysis techniques are highly effective for analyzing and visualizing
large scale data. By selecting a subset of the data domain that meets a user-defined
criteria, analysis activities can be focused only on the selected region instead of con-
sidering the entire domain. This makes the work-flow of scientists more manageable
and effective. These type of selective analyses are particularly common with multi-
variate data to trim down the variable subspace. Many query-driven strategies rely
on computing local data statistics to execute the queries efficiently. Therefore, the use
of statistical distributions as local data summaries inherently facilitates such query-
driven strategies. With distributions as the underlying data representation, we can re-
port queried region as a probability field. A high probability value at aregion signifies
that the query of interest has high likelihood at that region. Figure 9 shows the query
results on the Combustion data set for the bi-variate query 0.3 < mix frac < 0.7 and
y_oh > 0.0006. Figure 9a shows the ground truth deterministic region of the original
raw data, while Figure 9b shows the corresponding probability field satisfying the
given query, i.e, P(0.3 < mixfrac < 0.7 AND y_oh > 0.0006).
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(a) Raw data (Ground truth). (b)Reconstruction using regu- (c) Reconstruction using pro-
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Fig. 10: Visual comparison of U-velocity of Hurricane Isabel data. The reconstructed
fields are generated using Monte Carlo sampling of distribution-based summarized
data. This image is reprinted from our previous work [15].

3.4 Distribution Sampling-based Data Reconstruction

Often the application scientists want to visualize the data in its entirety to explore
certain data features in detail. To enable visualization the full resolution data, the
distribution-based data summaries can be used to reconstruct the full resolution data.
To reconstruct the data, statistical sampling techniques [17] are used to sample data
values from the distribution-based data summaries for reconstructing the data set.
In the following, we present reconstruction results created from various types of
distribution-based data summaries for both univariate and multivariate data.

Figure 10 shows the reconstruction result for the U-velocity field of Hurricane
Isabel data set. In this example, GMM-based data summaries were generated from
the in situ SLIC-based partitioning scheme [15]. For comparison, in Figure 10b, we
have shown the reconstruction result when regular block-wise partitioning scheme
is used. As can be seen, the reconstructed result produced from the SLIC-based data
summaries (Figure 10c) match closest to the ground truth shown in Figure 10a. The
result of regular block-wise partitioning contains artifacts and discontinuities (as
highlighted by black dotted regions), which are corrected in reconstruction obtained
from SLIC-partitioning based data summaries.

Visualization of the reconstructed full resolution data using the spatial distribution-
augmented data summaries [37] has been presented in Figure 11. In this example,
mixture fraction field of turbulent combustion data is used. The rendering of the
ground truth data is depicted in Figure 11a. For demonstrating the efficacy of the
spatial distribution-based data summaries, in Figure 11b, we have provided the re-
construction result generated from regular block-wise GMM-driven data summaries,
which do not use any spatial distribution information. Finally, Figure 11c shows the
result produced from spatial distribution-augmented data summaries, which obtains
a smooth reconstruction of the data. It is evident that the augmentation of the spatial
distribution information makes the reconstruction more accurate and removes the
block boundary irregularities, which are visible in the reconstruction result created
from block-wise GMM-guided data summaries (Figure 11b).
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(a) Rendering from raw data. (b) Reconstructed data render- (c) Reconstructed data render-
ing using block-wise GMM ing using spatial GMM based
based summary data. summary data.

Fig. 11: Visual comparison of volume rendering in combustion data set. The samples
are drawn from the PDFs, which are calculated at all grid points of the raw data,
using Monte Carlo sampling. This image is reprinted from our previous work [37].
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Fig. 12: Qualitative and quantitative results for multivariate sampling-based scalar
field reconstruction of Hurricane Isabel data set. This image is reprinted from our
previous work [22].

For multivariate data, it is important to reconstruct the scalar fields of the different
variables at the same time. This can be achieved only when the variable relation-
ships are factored in during distribution modeling. Figure 12 shows the multivariate
reconstruction results for the Hurricane Isabel data set with 11 physical variables,
using multivariate histograms (sparse), multivariate GMM, and copula-based multi-
variate modeling strategy. Figures 12a-d shows the qualitative reconstruction results
of only the Pressure variable. Whereas, Figure 12e shows the quantitative results
of normalized root mean squared error (RMSE) for all the 11 variables for the
three different multivariate distribution modeling approaches. As can be seen, the
flexible copula-based multivariate distribution modeling approach performs better
than standard multivariate distribution model. The storage overhead and estimation
times for the 3 different multivariate models are reported in Figure 12f and 12g
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Fig. 13: A diagram of the compressor stage of TURBO simulation and a zoomed
in view of it on the right. Different components of a blade is shown. This image is
reprinted from our previous work [12].

respectively, for both the Isabel as well as the Combustion data sets. The results
highlight the fact that multivariate histograms have higher storage footprint, while,
multivariate GMMs have large estimation time cost associated as compared to the
flexible copula-based method.

4 Demonstration of An In Situ Distribution-guided End-to-End
Application Study

In this section, we describe an end-to-end real-life example of an application study
using in situ generated distribution-based data summaries for solving a practical
domain-specific problem. In this application study, we explore rotating stall phe-
nomenon in a transonic jet engine simulation data sets. The data is generated from a
large-scale computational fluid dynamics (CFD) simulation code, TURBO [10, 9].
TURBO is a Navier-Stokes based, time-accurate simulation code, which was devel-
oped at NASA. TURBO simulation models the flow of air through a rotor in the
engine turbine compressor stage. The model of the rotor of the compressor stage
is shown in Figure 13. The rotor consists of 36 blades and so there are 36 blade
passages. A zoomed-in view of the rotor is shown on the right where the tip, the hub,
and the leading edge of the blade is highlighted. It has been shown previously that
the data generated from TURBO can capture the stall phenomenon in great detail.
However, the volume of data generated from TURBO is very large, and therefore, in
situ data summarization is critical for enabling timely exploration of the simulation
data with high temporal fidelity at an interactive rate.

One of the primary goals of this study was to develop techniques that can detect the
rotating stall as early as possible such that the experts can employ stall preventing
measures. Rotating stall, if fully developed, can potentially damage the turbine
compressor blades. Therefore, early detection of the stall is critical. Furthermore,
the reasons behind the inception of rotating stall in transonic engines are still not
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Fig. 14: A schematic of the in situ distribution anomaly-guided stall analysis. This
image is reprinted from our previous work [12].

fully understood and hence is an open research problem. Besides identifying the
precursors of the rotating stall, the experts also want to understand the role of
different variables during the inception of the stall. In the following discussion,
we present two application studies for analyzing and visualizing the rotating stall
phenomenon using both univariate and multivariate in situ distribution-based data
summaries and demonstrate their effectiveness.

4.1 Univariate Distribution Anomaly-guided Stall Analysis

Since the rotating stall is referred to as an instability in the flow data, it can be
characterized as an abnormality in the simulation data. In an ideal condition, the
simulation is expected to be axisymmetric, and hence, variables such as Pressure,
Entropy are expected to have identical values around the compressor stage. Any
region where Pressure or Entropy values deviate from its expected behavior can
be identified as abnormalities and therefore a region containing potential stall. To
capture such regions and interactively analyze rotating stall post hoc, the large-
scale simulation data was first summarized in situ using block-wise GMM-based
data summaries. To compute the GMM-models efficiently, in this work, instead of
using the traditional Expectation-Maximization (EM) algorithm, an approximate
incremental mixture model estimation technique was used. More details of this
incremental modeling can be found in [12]. The summarization was performed for
Pressure and Entropy variables and the distribution-based summaries were stored into
disks. Then using the reduced GMM-based distribution data, post hoc stall analysis
was carried out. In Figure 14, a schematic of the complete end-to-end analysis
workflow is presented. As we can see, the data was summarized in situ and then in the
post hoc analysis phase, the data summaries were used to detect regions that showed
spatial and temporal distribution anomalies. Through interactive visualization, the
domain experts verified their hypothesis and explored the stall features efficiently.
The GMM-based data summaries were first used to estimate the spatial and
temporal region-wise anomalies in the data set. To detect such regions, block-wise
GMM-based distribution-based summaries were compared over space and time for
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Fig. 15: In situ generated distribution-based spatial anomaly pattern study. The image
shows spatial anomaly of Pressure and Entropy variables where the stalled regions
are highlighted in blended purple color. This image is reprinted from our previous
work [12].

(a) Spatial anomalies at time step 2200. (b) Spatial anomalies at time step 2540.

Fig. 16: Visualization of detected spatial anomaly regions of Pressure (in blue
surfaces) and Entropy (in red surfaces). The regions are detected near the blade tip
regions of several rotor passages. These regions act as blockage to the regular airflow
and create flow instability which eventually leads to stall. This image is reprinted
from our previous work [12].

each blade passage. Finally, the detected regions that indicated spatial anomaly were
plotted as shown in Figure 15. It can be seen that the abnormalities develop gradually
over time and when the stall happens, such abnormal regions become pronounced
(indicated by the dark purple region in the plot). Visualization of such detected
spatially anomalous regions in the data domain is shown in Figure 16. As can be
seen, the detected regions are near the tip of the blades as expected and the anomalies
are observed for both Pressure (the blue-colored regions) and Entropy variable (the
red-colored regions). The compressor blade passages containing such abnormalities
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Fig. 17: Post hoc analysis results of the jet turbine data set. (a) Raw Entropy field. (b)
Sampled scalar field of Entropy. (c) Raw U-velocity field. (d) Sampled scalar field of
U-velocity. (e) Raw Temperature field. (f) Sampled scalar field of Temperature. (g)
Probabilistic multivariate query result for P(Entropy > 0.8 AND Uvel < —0.05)
(h) Isosurface for probability value of 0.5. (i) Distribution of Temperature values in
the queried region i.e., P(Temp|Entropy > 0.8 AND Uvel < —0.05). (j) Distri-
bution of correlation coefficients between Entropy and Temperature for the queried
region. (k) Distribution of correlation coefficients between U-velocity and Temper-
ature for the queried region. This image is reprinted from our previous work [22].

(@

are identified as stalled regions. A similar analysis was also done using the temporal
anomaly plots. Using both spatial and temporal anomaly-based analysis, the domain
expert was able to confirm the effectiveness of distribution-based data summaries in
detecting rotating stall. For a detailed discussion on this topic, interested readers are
referred to [12].

4.2 Multivariate Distribution Query-driven Stall Exploration

Scientists were also interested in understanding the importance of the variables
Entropy, U-velocity, and Temperature towards the formation of stall-like features in
the turbine passages. This requires that the distribution-based data summaries capture
the multivariate relationship among the variables for post hoc analyses. Copula-
based multivariate distribution modeling strategy, as discussed in Section 2.1.2,
was employed to create multivariate data summaries for local partitions. To model
the individual variables, a Gaussian distribution was used for partitions with a
high normality test score, and a GMM (with 3 modes) was used otherwise. To
retain the spatial context of data within a partition, spatial variables (x, y, and z
dimensions) were also modeled using uniform distributions. The dependency among
all these variables (i.e., 6, 3 physical + 3 spatial) was modeled using Gaussian copula
functions.
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Table 1: Percentage timing of in situ GMM-based univariate summarization with
half and full annulus runs. This table is reused from our previous work [12].

2 revs. 4 revs.
Simulation|In situ|Simulation|In situ
Half annl. (164 cores)| 97.3% |2.7% | 97.5% |2.5%
Full annl. (328 cores)| 97.63% |2.37%| 97.42% |2.58%

Configuration

The in situ multivariate data summaries were later used to perform various multi-
variate post hoc analyses and visualizations. Figure 17a,c,e show the original scalar
fields for Entropy, U-velocity, and Temperature respectively. The corresponding
sampled scalar fields, reconstructed from the data summaries are shown in Fig-
ure 17b,d,f respectively. Scientists knew that Entropy values greater than 0.8 and
negative U-velocities correspond to potentially unstable flow structures, which can
lead to stalls. To focus the study on regions with such multivariate properties, a
multivariate query Entropy > 0.8 and Uvel < —0.05 was made to select the
region. The corresponding probability field is shown in Figure 17g, whereas, Fig-
ure 17h shows the isosurfaces of probability value 0.5 across the blade structures.
Figure 17i shows the distribution of Temperature values in this queried region (i.e.,
P(Temp|Entropy > 0.8 AND Uvel < —0.05)). The peak in the distribution sug-
gests that Temperature values around 0.9 can be related to potential engine stall.
Figure 17j and k show how Temperature is correlated with Entropy and U-velocity
respectively, in the selected region. There is a strong positive correlation with Entropy
and a significant negative correlation with U-velocity. Such exploratory analysis ac-
tivity can help scientists to gain more insights into the multivariate relationships in
their simulation. For more detailed discussions, the interested readers are referred
to [22].

From the above analyses, we can observe that the various distribution-based
techniques led to a detailed understanding of the rotating stall inception problem
and also how different variables can be used to detect stall quickly before it becomes
destructive. In the future, the early detection capabilities developed can be used
to implement some stall preventing measures. One potential measure is to install
sensors at the appropriate places that will be measuring abnormalities using the
proposed techniques for early detection of the event in the turbine stage so that when
abnormalities are detected, these sensors would recommend the users to act and
prevent engine destruction. Also, the knowledge learned from these analyses could
lead to a better turbine stage design that will make the engine safer.

4.3 Storage and Performance Evaluation

The performance studies presented here with TURBO simulation were done using a
cluster, Oakley [7, 8], at the Ohio Supercomputer Center. Oakley contains 694 nodes
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Fig. 18: In situ timing comparison for univariate data modeling using TURBO simu-
lation with and without raw output. Pressure and Entropy variables were summarized
using regular block-wise partitioned data and GMMSs were used as the distribution
model. With the in situ pathway, the raw I/O time can be saved. This image is
reprinted from our previous work [12].

with Intel Xeon x5650 CPUs (12cores per node) and 48 GB of memory per node. A
parallel high-performance and shared disk space Lustre was used for I/O.

4.3.1 Performance Evaluation of Univariate Data Modeling:

One single revolution of the complete rotor, i.e. the full annulus model, in TURBO
simulation generates 5.04 TB raw data. To perform the studies presented above, 8
revolutions were run which generated a total of 40.32 TB data and a total of 28800
time steps were run. Since the in situ call was made at every 10" time step, it required
processing of 4.032 TBs of data. However, for this experimentation, only the rotor
was considered and the data for the two stators were not stored. The raw data for the
rotor part in PLOT3d format is 690 MB per time step, and hence, storing all the raw
data for 8 revolutions at every 10" time step would require 993.6 GB storage. In this
study, for summarizing the data using local distribution-based models, the spatial
domain was partitioned using non-overlapping regular blocks of size 53. The output
of the in situ summarized data for two variables in VTK format took only 51.8 GB
for 8 revolutions resulting in approximately 95% data reduction.

In Figure 18, timing performance of the in situ processing is presented. It can
be seen that the in situ summarization time is significantly smaller compared to
the simulation time. Furthermore, the raw data I/O shown here can be completely
removed if the in situ pathway is taken. From Table 1, it is also observed that in situ
distribution-based summarization for two variables only take about 2.5% additional
time. While estimating the in situ processing overhead, both the half-annulus model
(consists of 18 passages) and the full-annulus model (the complete rotor with 36
passages) were tested. It is observed that the in situ data summarization time is
consistent for both these runs. Hence, by performing in situ processing, we have
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demonstrated a scalable rotating stall analysis to help the expert achieve a better
understanding of the phenomenon. In the following, we present performance results
for the multivariate data summarization case.

4.3.2 Performance Evaluation of Multivariate Data Modeling:

For the copula-based in situ multivariate data summarization case study, the simu-
lation domain was partitioned regularly into non-overlapping partitions of size 5°.
Two full revolutions of the turbine data comprised of 7200 time steps. In situ data
summaries for local partitions were created every 107" time step, thereby storing
720 time steps. Since the size of the raw data produced at each time step was 690
MB, therefore, two full revolutions of the simulation accumulated 496.8 GB of data.
Compared to this size, storing multivariate data summaries took only 19.6 GB which
resulted in 96% data reduction. Moreover, writing the raw data to the storage disk
took around 13% of the simulation execution time, whereas, the combined time to
estimate the multivariate summaries and writing them out to disk took 15.4% of the
overall simulation time. Besides reducing the storage footprint, the data summaries
offer significantly faster post hoc analysis time. Performing multivariate queries on a
regular workstation machine took on average 64.6 seconds, whereas, reconstruction
of the full scalar fields from the data summaries took only 178.3 seconds on average.

5 Discussion and Guidelines for Practitioners
5.1 Discussion

The above sections demonstrate the efficacy and usefulness of various in situ
distribution-based data summarization techniques for performing flexible and ex-
plorable data analysis and visualization. It has been shown that when the data is
reduced in the form of distributions then features in such summary data can be
searched efficiently by defining the feature as a distribution. This is primarily benefi-
cial for scientific features which are hard to be defined precisely due to the complexity
of the feature [14]. In such cases, a statistical distribution-based feature descriptor is
found to be effective. Another advantage is that the distribution-based data represen-
tations can be directly used in these cases and a full reconstruction is not necessary
for finding or tracking features. This also helps in accelerating the post hoc analy-
sis. However, a reconstruction of the full resolution data is also possible from the
distribution-based data summaries which can be used to explore scientific features
using traditional techniques when precise feature descriptors are available.

Another observation for the distribution-based data analysis techniques is that
typically the distribution estimation is done in situ and feature analysis and visu-
alization are conducted in the post hoc analysis phase. This strategy is adopted by
keeping in mind that a majority of the visual analysis tasks require interaction with
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the data, forming new hypotheses, and then refining and verifying those hypotheses
as results are studied. These process engages application scientists in the exploration
loop and often can take a considerable amount of time. Therefore, these kinds of ex-
ploratory analyses are not suitable for an in situ environment when the simulation is
running because doing so could slow down the simulation significantly which is un-
desirable. However, we acknowledge that if the application scientists know precisely
about the data features that they are interested in, then extraction and visualization of
such features directly in the in situ environment might be a viable solution. In such
cases, visualization artifacts such as images of the features can be stored for post hoc
analysis.

Itis to be noted that, besides applying traditional statistical methods for estimating
distributions as discussed above, there is a recent surge in the use of deep learning-
based models to estimate data distribution in the field of machine learning. Two
such prospective methods are the Generative Adversarial Networks (GANs) [18]
and Variational Autoencoders (VAEs) [26]. Such deep learning-based models adopt
unique optimization strategies to model very high-dimensional distributions of a
wide range of objects. They convert a purely statistical problem of distribution
estimation into an optimization problem (i.e, find the parameter values that minimize
some objective function). However, to model the distribution perfectly, deep learning
methods need multiple iterations over the data, which can be infeasible in situ
solution. Recent efforts into the application of such methods in the field of scientific
visualization [4, 19, 25] have been to mostly perform post hoc analyses. Bringing
in the advantages of such powerful models to an in situ environment is an exciting
research prospect in the near future.

5.2 Guidelines for Practitioners

In this section, we briefly provide some guidelines for the users and practitioners
about how the appropriate distribution models can be selected and how some of these
techniques can be implemented in the simulation. Given a particular task, the first
choice is to decide whether univariate distribution models are sufficient or multivari-
ate models will be needed. If multivariate models are necessary, then we recommend
using the statistical Copula based approach. This technique is suitable when several
variables are needed to be summarized and can tackle the curse of dimensionality
problem that arises often while estimating high-dimensional distributions. If uni-
variate distribution-based models are sufficient, then we found that GMM-based
summarization performed best. In Section 1.3, we have provided several statistical
tests that can be used to select the appropriate number of Gaussian models when esti-
mating a GMM. Note that, using the traditional Expectation-Maximization algorithm
for estimating GMM parameters can be costly at times, and hence, if performance
is critical, an alternate incremental Gaussian mixture model estimation strategy is
suggested in [12]. The use of an incremental algorithm will trade some estimation
accuracy but will result in faster parameter estimation.
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A majority of the above techniques advocate for the local region-based distri-
bution models. In such modeling, since the data blocks are non-overlapping, the
distribution estimation for each data block is independent and hence no additional
data communication is required. So, it is straightforward to compute such models.
First, the data in each processing node needs a partitioning and then an appropriate
distribution model can be used. Users and practitioners are encouraged to consider
using EDDA [1], the open-source distribution-based analysis library, which came
out of the research done at the Ohio State University and implements building blocks
of several of the distribution estimation techniques that have been discussed in this
chapter. The library is under development and so some of the advanced techniques
might not be readily available. However, we believe this library will be a useful
starting point for the practitioners who are interested in using distributions in their
analyses.

If the users are interested in conducting the feature analysis in the in situ environ-
ment, then additional data communication among computing nodes will be needed.
Since a data feature could span across multiple computing nodes, a strategy needs to
be developed which will send data distributions to the neighboring processing nodes
so that the complete feature can be extracted and analyzed. Sending data distributions
to the neighboring blocks is expected to be a cheap operation since the size of dis-
tribution parameters is significantly smaller compared to the raw data. Note that this
will require new research to come up with a desired and scalable solution. However,
we believe that with the present advances made in the distribution-based analysis
domain, as discussed throughout this chapter, the strategy of estimating distributions
in situ and performing feature analysis post hoc have resulted in promising results
and a variety of complex and important visual-analysis tasks were satisfactorily
performed.

6 Additional Research Possibilities and Future Scopes

Above sections present various in situ distribution-based data modeling techniques
for both univariate and multivariate scalar data sets. The applicability of such
distribution-based data summaries for solving various domain specific problems
is also demonstrated in Section ??. In order to study the usefulness of the above
distribution-based data summaries, in the context of a broader set of visualization
tasks, we plan to conduct a comprehensive evaluation where comparison among
various data reduction techniques such as distribution-based summaries, data com-
pression techniques, and sampling-based reduction approaches will be considered.
Besides analyzing scalar data sets, distribution-based data summaries can also be
used for analyzing and visualizing vector field data sets, ensemble data sets, and also
particle-based data. Several studies have already been done for summarizing vec-
tor fields using distribution-based representations [23, 27]. To generate streamlines
from such distribution-based vector data summaries, He et al. adopted a Bayesian
framework using particle filtering technique [23]. In another work, to trace the parti-
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cles accurately using distribution-based vector fields, Li et al. used winding angle of
particles trajectories for correctly predicting the particle path using a Bayesian ap-
proach [27]. A recent work demonstrated usefulness of distribution-based techniques
for in situ particle data reduction [28].

Among other future possibilities, applications of distribution-based data sum-
maries have also been tested for summarizing and analyzing large ensemble data
sets. In one approach, Wang et al. [38] first captured the relationship between high
and low resolution ensemble data members. Then for future runs of the simula-
tion using different parameter combinations, the data was summarized in situ using
GMM-based data models. During post hoc analysis, the high-resolution data was
reconstructed from the GMM-based down-sampled data summaries using the prior
knowledge to improve the reconstruction quality. The in situ study was conducted
using Nyx cosmology simulation [3]. For more details about this technique, please
refer to [38]. Besides statistical super resolution, distribution-based representations
of ensemble data can also be used for studying data features which are characterized
as a range of data values. Study of such features were done by He et al. [24] using
range likelihood trees.

7 Conclusion

In this chapter we have described various methods of in situ distribution-based data
summarization techniques, which on one hand can achieve significant data reduction,
and on the other hand can also be used as a flexible data product for post hoc
visual analysis. We discussed in details the advantages and disadvantages of using
different parameter and non-parametric distribution models for data summarization
from the perspective of their in situ feasibility. Using a real world large-scale CFD
simulation, we discussed the challenges and possible solutions for distribution-
based data modeling for both univariate and multivariate cases. Additionally, several
important post hoc data analysis and visualization tasks have been briefly discussed
which highlight the effectiveness of the in situ generated distribution-based data
summaries in solving a wide range of visualization and data analysis problems.
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