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ABSTRACT

High-resolution simulation data sets provide plethora of informa-
tion, which needs to be explored by application scientists to gain en-
hanced understanding about various phenomena. Visual-analytics
techniques using raw data sets are often expensive due to the data
sets’ extreme sizes. But, interactive analysis and visualization is
crucial for big data analytics, because scientists can then focus on
the important data and make critical decisions quickly. To assist effi-
cient exploration and visualization, we propose a new region-based
statistical data summarization scheme. Our method is superior in
quality, as compared to the existing statistical summarization tech-
niques, with a more compact representation, reducing the overall
storage cost. The quantitative and visual efficacy of our proposed
method is demonstrated using several data sets along with an in situ
application study for an extreme-scale flow simulation.

Index Terms: I.3 [COMPUTER GRAPHICS]: Picture/Image
Generation—Display algorithms; G.3 [PROBABILITY AND
STATISTICS]: Distribution functions—Statistical computing.

1 INTRODUCTION

Recent advancements in high performance computing have enabled
application scientists to perform computational simulations with
very high-resolution models. Large-scale simulations, now-a-days,
generate different types of data output in the order of petabytes and
beyond. These simulations allow experts to model various physical
phenomena with high precision. Detailed exploration of such data
sets can enhance the understanding about the modeled phenomena
greatly. However, timely analysis and visualization of such sheer
amount of data is posing significant challenges for the scientists.

The use of statistical data summaries has emerged as a promis-
ing approach for analyzing and visualizing large-scale data sets
[17, 20, 22, 31–34]. The applications of probabilistic data sum-
maries for big data analytics is becoming more and more promi-
nent in the visualization domain [7, 14, 15, 30, 40]. Specifically,
local region-based distribution data summaries for feature explo-
ration and tracking in scientific applications have been explored
[14, 15, 17, 18, 29, 36, 38]. The benefits of local region-based prob-
abilistic data models are fourfold: (1) Representing a block of data
with a probability distribution can preserve the block’s statistical
properties well, which allow efficient feature analysis [15, 18]; (2)
A compact distribution-based data model is able to reduce the size
of the data significantly which enables flexible and scalable explo-
ration of extreme-scale data sets [14]; (3) Uncertainty quantifica-
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tion during analysis becomes possible which enriches verifiable vi-
sualization [14, 36]; (4) By sampling the distributions, a statistical
realization of the raw data can be constructed and visualized for
exploration [7, 19, 26].

An ideal local region-based statistical data summarization
scheme aims at preserving the statistical properties of the data as
much as possible with a compact representation. Therefore, for
achieving a compact-yet-accurate probabilistic data representation,
a region partitioning scheme produces partitions with coherent data
values, such that, efficient distribution-driven summarization is pos-
sible, and statistical uncertainty in visual analytics can be reduced.
However, a majority of the previous works modeled the data in local
regions by estimating distribution over a regular spatial partitioning
of the domain. These methods have demonstrated good results, but
have several potential shortcomings. A regular partitioning does
not consider any inherent spatial data coherency. As a result, many
data blocks will have high data value variation resulting lower accu-
racy in sampling and higher uncertainty during visualization. Fur-
thermore, as regular partitioning does not consider data homogene-
ity during decomposition, visualization will introduce artifacts and
discontinuities on block boundaries, making the visualization less
effective. Hence, there is a growing need of more accurate and
efficient statistical data summarization techniques, judging by the
wide applicability of local statistical data models in visualization
community.

In this work, we propose an improved local region-based statisti-
cal data summarization technique using distributions. The proposed
method partitions data by its spatial coherency and aims to reduce
uncertainty of all partitions. To partition the data into local regions,
we employ SLIC (Simple Linear Iterative Clustering) algorithm [1],
which was used for generating super-pixels and super-voxels [1,46].
This minimizes the variance in each spatial partition and hence,
each region/partition can be compactly summarized using a proba-
bility distribution function which preserves the statistical properties
of the data efficiently. To achieve this, we propose a hybrid scheme
of distribution-based summarization by using either a single Gaus-
sian or a mixture of Gaussians (GMM) per partition. Advantages
of using GMMs as a compact parametric distribution representation
over other alternatives such as histograms and Kernel Density Esti-
mators (KDE) have been discussed previously in [15, 26]. Further-
more, GMMs also have been shown to be effective for probabilistic
data classification [14,26,39] which makes it an attractive choice in
this work.

For evaluating the efficacy of the proposed technique, we con-
duct extensive quantitative and qualitative studies among: (a) Our
SLIC-based method; (b) Regular partitioning; and (c) K-d tree par-
titioning. For each of these partitioning methods, the data sum-
marization is done using the aforementioned hybrid summariza-
tion scheme. We study two visualization applications in our ex-
perimentation for showing effectiveness of our method. The re-
sults demonstrate that: (a) Both quantitatively and qualitatively, our
SLIC-based summarization produces superior statistical sampling-
based data reconstruction with best storage-to-quality trade-off; (b)
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More precise distribution similarity-based feature matching, where
identified features are free from boundary discontinuities and other
artifacts, which often arise from regular or k-d partitioning scheme.
We also show that, our method is suitable for in situ summariza-
tion, by running the proposed scheme directly with a large-scale
CFD simulation, resulting in an improved distribution-based data
summarization enabling flexible and scalable post-hoc analysis.

Our contributions in this work are twofold:

1. We propose a novel and improved statistical data summariza-
tion technique for large-scale simulation data which enables
in situ triage and summarization of data while preserving the
important information compactly.

2. We present a comprehensive study among the existing
partition-based data summarization methods and the pro-
posed scheme to demonstrate the superiority of our proposed
scheme, both quantitatively and qualitatively.

2 RELATED WORKS

Statistics and distribution-driven data visualization. Statistical
analysis methods for data exploration and visualization has numer-
ous applications in visualization community. Use of distribution-
based methods for exploring scientific data sets has become an
emerging trend in the visualization domain. For visualizing spa-
tial distribution data sets, Kao et al. [21], Luo et al. [30] and Potter
et al. [34] visualized distribution datasets by displaying statistical
summaries such as means, standard deviations and skews in color,
height field, or glyphs. Potter et al. [33] utilized summary plots
which enhance box plots with moments and histograms in higher
dimension. Kniss et al. proposed statistically salient volume data
visualization [22]. A study of Non-parametric distribution mod-
els and their applicability was discussed in [32]. A fuzzy match-
ing based feature extraction method was proposed by Johnson and
Huang [20]. Efficient range distribution query algorithms using in-
tegral histograms [7] and wavelet transforms [24] yielded valuable
statistical information from data. Wang et al. [39] utilized GMMs
for transfer function design in time-varying datasets. Liu et al. [26]
exploited GMMs for stochastic sampling-based volume rendering
on the GPU. For analyzing FTLE in distribution data sets, Guo et
al. [19] used distribution-based data models for uncertainty quan-
tification.

Local region-based distribution models for large-scale data
visualization. For designing transfer functions, Lundstrom et al.
[29] used local histograms. Wei et al. [40] presented efficient lo-
cal histogram search using bitmap indexing for feature analysis.
For large data summarization, Thompson et al. [36] made use of
distribution-based hixels, which stored a histogram per data block
to preserve uncertainty information due to data down-sampling. A
regular block-wise approach was taken by Gu and Wang for a
graph based analysis of time-varying data [18]. Recently, Dutta and
Shen [15] proposed uncertain feature extraction and tracking based
on block-wise mixture of Gaussians (GMM). In another work, they
demonstrated the efficacy of local block-wise GMM-based data sets
for detecting flow instability for rotating stall analysis [14]. Almost
all these local distribution-based works model data sets, use regular
blocks and summarize each block using the distribution. Here, we
propose a novel and improved distribution driven data summariza-
tion and demonstrate its efficacy over the existing statistical data
summarization methods.

In situ processing, analysis, and visualization. The necessity
of in situ analysis is becoming more prominent as the size of data
output is out-pacing post-processing and visualization capabilities.
A comprehensive survey of in situ visualization techniques can be
found in [4]. Direct visualization of simulation data by perform-
ing in situ visualization has been used previously. Run-time visu-
alization with LibSim using VisIt was introduced by Whitelock et

Figure 1: A schematic diagram of our proposed method.

al. [42]. Lofstead et al. proposed ADIOS [27], and Fabian et al.
introduced CATALYST for ParaView [16]. Vishwanath et al. en-
riched in situ analysis by proposing GLEAN [37]. Yu et al. con-
ducted in situ visualization of combustion data [47]. A zero copy
data structure [44], and an in situ eddy census in ocean simulation
models [45] were proposed by Woodring et al. However, visualiza-
tion tasks which require exploratory data analysis can not be done
using pure in situ approaches. Hence, recently, a new paradigm in
in situ analysis has gained popularity, where the large-scale data is
summarized in situ and post-hoc analysis is performed using the
summary data. Visualization community has begun to embrace this
new technique [10,25]. A sampling-based method for visualization
of Cosmology data was used by Woodring et al. [43]. Ahrens et al.
adopted an in situ image-based approach [2] for feature exploration
during post-hoc analysis. Dutta et al. recently enabled efficient in
situ incremental GMM estimation [14]. In this work, we propose a
technique for local distribution-based data summarization and fur-
ther show the in situ applicability of the proposed method using a
large-scale CFD simulation.

3 OVERVIEW

Our main goal is to devise a distribution-based statistical data sum-
marization scheme and show its effectiveness by contrasting it with
existing statistical summarization methods. In Figure 1, we present
a schematic diagram of the proposed technique. For generating the
spatial partitions, we use a fast clustering algorithm SLIC. Then the
distribution guided summarization of the partitions are obtained by
representing each partition using a single Gaussian distribution or a
GMM. The resulting hybrid distribution-based data is then used for
analysis and visualization applications. As can be seen from Fig-
ure 1, we acknowledge that the ideal time for running the proposed
summarization is in situ, i.e., during the simulation run. We use
several test data sets to demonstrate the efficacy and visual accu-
racy of our proposed method both quantitatively and qualitatively.
Finally, we conduct an in situ application study using a large-scale
flow simulation.

4 DATA PARTITIONING SCHEMES

Local region-based data models have recently gained popularity in
the visualization community for enabling timely analysis of large-
scale scientific data sets. Instead of analyzing at individual point
level, the approach uses data blocks as analysis units resulting in
computation cost reduction without losing too much information,
particularly when the size of the data is very big [38]. Oftentimes,
scientific visualization tasks involve exploration of specific phe-
nomena, defined as features, which are found to be spatially con-
nected regions in the data set. In this case, using local region-based
analysis allows efficient identification and isolation of features. Fur-
thermore, in some domain specific applications, scientists specifi-
cally desire to look at the characteristics of local regions for tem-
poral event discovery, instead of individual points. This is because
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(a) Regular block-wise

partitioning.

(b) K-d tree based de-

composition.

(c) SLIC-based parti-

tioning.

Figure 2: Different types of data partitioning schemes.

the behavior of individual points can not display the phenomenon
robustly, and may capture false positives during automatic event de-
tection [14]. Hence, local region-based data analysis has its own
benefits, but, the accuracy of these methods depend on the quality
of partitioning techniques used for generating the domain decom-
position. In the following, we present an in depth discussion about
the different data partitioning techniques studied in this work.

4.1 Regular Block-wise Partitioning

Regular block-wise partitioning decomposes the domain into equal
sized blocks of predetermined dimensions. Due to the simplicity
and computational efficacy, this scheme has been widely adopted
in many of the previous works involving local region-based data
analysis. A regular partitioning of a 2D data is shown in Figure
2a as an illustrative example. Observe that, this scheme does not
consider data properties while dividing the domain into smaller sub-
regions. As a result, some partitions will contain data points with
a high data value variation. Consequently, statistical summaries
estimated from the data points of such blocks will have a higher
value spread. Analysis using these summaries will lead to higher
uncertainty, since the samples drawn from those block distributions
will contain large errors.

4.2 K-d Tree Partitioning

To obtain a more homogeneous decomposition of data, partition-
ing using k-d trees can be performed. As was discussed in [31], a
recursive partitioning of the domain can be obtained by following
a top-down subdivision scheme with appropriate termination crite-
rion. Here, we use the information theoretic measure entropy [11]
to measure the randomness of a partition. In information theory,
the value of Shannon entropy is regarded as a measure of the infor-
mation content of a probability distribution of a random variable.
Formally, information entropy H(X) is measured as:

H(X) =−
n

∑
i=1

prob(xi)log(prob(xi)) (1)

where n is the total number of data points in the partition, prob(xi)
is the probability of data value xi. It is observed that Shannon en-
tropy increases when the spread of a distribution is higher, i.e., the
distribution contains a wide range of data values. In the k-d par-
titioning scheme, the entropy of the data values of each partition
is checked against a predefined threshold value. If the entropy of
the partition is higher than the threshold, then the partition is di-
vided into smaller sub-regions to refine the region and reduce the
variation. As a result, it guarantees that all the partitions satisfy the
predefined homogeneity criterion. An example of this scheme is
demonstrated in Figure 2b using a 2D data set. It can be seen that
the regions with higher variation have been refined more.

4.3 SLIC-based Partitioning

In this work, we employ a clustering-based data partitioning
scheme using a variant of k-means algorithm, called SLIC (Sim-
ple Linear Iterative Clustering) [1]. SLIC originally was designed

for the generation of superpixels in images, and was also used suc-
cessfully for the generation of supervoxels in 3D data sets [1, 46].
The fast execution time and state-of-the-art clustering quality make
SLIC a suitable choice in our work. Each cluster/supervoxel gener-
ated by SLIC is treated as a partition in this work.

Motivation for using SLIC. Compared to traditional k-means
clustering, SLIC adopts a local neighborhood-based approach,
where similar data points within a local neighborhood are grouped
into one cluster. During the optimization stage, from each cluster
center, distances only to the points in the predefined neighborhood
are compared. This reduces the total number of distance computa-
tions significantly by limiting search in a local window. As a result,
the algorithm performance is boosted significantly. Furthermore,
SLIC uses a weighted distance measure that provides contributions
from both the spatial locality of the data points and their scalar value
similarities. Due to these properties, SLIC partitions the data do-
main into smaller sub-regions where each partition contains points
which are: (a) spatially as contiguous as possible; and (b) homoge-
neous in value domain. In Figure 2c, we show an illustrative ex-
ample of SLIC algorithm applied on a 2D image. As shown, SLIC
partitions similar valued data points along non-axis aligned bound-
aries compared to the methods shown in Figure 2a and 2b. We later
demonstrate that summarization using distributions of SLIC parti-
tions achieves superior quality than the previously described parti-
tioning schemes. Below, we briefly discuss the SLIC algorithm.

SLIC algorithm. SLIC requires the user to only provide the
expected approximate size of the spatial clusters/partitions. Assum-
ing that the user has provided the spatial size of the partitions as
p×q×r, and if the dimension of the data is X×Y ×Z, then the num-
ber of partitions K can be estimated as: K =(X×Y ×Z)/(p×q×r).
For finding the K initial cluster centers, the entire data domain is di-
vided into p× q× r sized blocks, and the center of each block is
selected as its initial cluster center. In the cluster assignment step,
each voxel is associated with the nearest cluster center whose search
region overlaps with the voxel’s spatial location. Since the expected
size of a cluster is p× q× r, the search for similar voxels is done
within a volume 2p×2q×2r around each cluster center. This local
region-based search during the clustering reduces the total number
of distance computations significantly compared to the traditional
k-means algorithm, resulting in a overall speed up. Similar to the K-
means algorithm, SLIC is an iterative clustering algorithm. During
each iteration: (a) Each voxel is associated to its nearest most simi-
lar cluster; (b) The cluster centers are recalculated with the updated
cluster assignments. For each iteration of SLIC, the difference δ ,
between the current cluster centers and the previous cluster centers
are computed using the L2 norm between all the cluster centers. If
the value of δ is higher than a predefined threshold value, the algo-
rithm moves to its next iteration, otherwise, when δ becomes lower
than the threshold, the algorithm terminates.

It is to be noted that, by restricting the search window into a lo-
cal region for every cluster center, the time complexity of SLIC
is significantly reduced compared to a traditional k-means algo-
rithm. The complexity of a k-means algorithm scales with O(kN),
whereas, SLIC scales with O(N) [1] for each iteration of the algo-
rithm. This improved computation complexity makes SLIC applica-
ble to large data sets [46] and also attractive for in situ environments,
where performance is an important factor.

Distance measure. The distance measure used in this algorithm
is similar to as was used in [46], and is defined as:

dist(i, j) = α · ||Ci −Pj||2 +(1−α) · |vali − val j| (2)

Here, Ci is the location of the cluster center i and Pj is the loca-

tion of point j. vali and val j are the scalar values at ith cluster center

and jth data point respectively. The mixing weight α is configured
based on the importance of spatial vs value components, such that
0 <= α <= 1, and α +(1−α) = 1. Smaller values of alpha will

3



To appear in IEEE Pacific Visualization Symposium 2017

produce higher weightage on the difference of data values than their
spatial locations. In Equation 2, as data values and spatial locations
can be scaled inconsistently, we normalize the data and normalize
spatial distances using the block length to achieve a consistent dis-
tance measure.

5 DISTRIBUTION-DRIVEN DATA MODELING AND SUMMA-
RIZATION

As our goal is to achieve a compact and storage efficient statistical
summarization of data, we use parametric distribution models for
modeling the data in the partitions. Distributions in the form of his-
tograms and Kernel Density Estimators (KDE) require higher stor-
age as compared to parametric distributions like Gaussian mixture
model (GMM). The use of Gaussian mixtures as an efficient statis-
tical data summarization has been demonstrated in [14, 15, 26, 39].

For many partitions created in the previous step, a single Gaus-
sian may be a sufficiently accurate representation. Hence, to re-
duce the storage cost of the distribution-based data summary, we
advocate for a hybrid distribution-based data representation scheme.
We perform a statistical normality test, D’Agostino’s K-squared
test [13], on each of the partitions. This test provides a goodness-of-
fit measure of departure from normality given the set of data points
in a partition. The method uses both kurtosis and skewness to detect
the deviation from normality. If a partition satisfies the normality
criteria, only a single Gaussian is used to summarize it, otherwise a
GMM is estimated for modeling the data in the partition. By using
this hybrid distribution summarization scheme, (i.e., Gaussians and
GMMs), we achieve a compact statistical summarization of the data
without sacrificing the information content of the data. Therefore,
for all of the partitioning schemes discussed above in Section 4, we
use hybrid summarization scheme for representing the partitions.

Another advantage is the potential reduction in computation cost
in creating the distributions for each partitions. Estimation of pa-
rameters of a GMM from the given sample points is done using the
Expectation Maximization (EM) [5]. This algorithm computes the
parameters of a GMM by maximizing a likelihood function using
the sample data points. Let us assume that χ = {x1,x2, ...xn} are
the set of i.i.d. samples, and θ is the set of parameters. Therefore,
the resulting density for the samples p(χ |θ) can be expressed as:

p(χ |θ) = Πn
i=1 p(xi|θ) = L(θ |χ) (3)

Here, L(θ |χ) is called the likelihood function, i.e., the likelihood
of parameter set θ given the sample data χ . The EM algorithm
maximizes this likelihood function and finds θ⋆ where,

θ⋆ = argmaxθ L(θ |χ) (4)

Hence, the EM algorithm for calculation of a GMM is compu-
tationally costlier compared to estimating the parameters of a sin-
gle Gaussian distribution. Therefore, if more partitions satisfy the
normality test, then the overall computational cost will be reduced,
since fewer partitions will employ the EM algorithm. So, by gener-
ating coherent and homogeneous partitions, that have low variance
via the SLIC method, we can reduce the computation cost and stor-
age of partitions via our hybrid GMM and Gaussian representations.

Algorithm 1 presents the proposed method of statistical data sum-
marization. As discussed above, we employ SLIC for generating
the partitions. Then each partition is tested for normality. If the par-
tition satisfies the test, a single Gaussian is used for representing the
partition, otherwise a GMM is computed for summarizing it. The
final output is reduced and compact hybrid distribution-based data
summary. For our following comparisons, we change the step 4 of
the above algorithm with a different (regular or k-d tree) partition-
ing scheme.

Algorithm 1 SLIC-based Statistical Data Summarization

1: Input: Raw data, user specified initial partition dimensions.

2: Output: Local distribution-based compact summary data.

3: Initialize cluster/partition centers uniformly over data domain.

4: Compute SLIC for partition generation.

5: for all p in Partitions do

6: Perform D’Agostino’s K-squared normality test.

7: if (p satisfies normality test) then

8: summarize p using a single Gaussian distribution.

9: else

10: summarize p using a GMM.

11: end if

12: end for

6 COMPARATIVE STUDY AMONG DIFFERENT PARTITIONING

TECHNIQUES

We provide a comprehensive comparative study among the three
partitioning methods and demonstrate the efficacy of our proposed
method. We consider both storage cost and quality of statistical
summarization while comparing these methods. For comparing the
quality of statistical summarization, we use sampling-based data
reconstruction and visualization as one of our tasks via stochastic
sampling-based methodologies for data analysis [28]. We perform
sampling on the distribution-based summary data for creating a sta-
tistical realization of the raw data. It follows that, with a better
quality of the statistical summarization, it will result in a more ac-
curate realization of data with better quality of samples [23]. We
employ Monte Carlo sampling for generating a realization of the
raw data, as was used in [19, 26].

To estimate the quality of this sampling-based reconstruction, we
use Signal-to-Noise Ratio (SNR) for quality comparison. SNR is
defined as the dimensionless ratio of the power of a signal to the
power of noise in the signal. Hence, higher values of SNR signify
better quality. Formally, SNR is defined as:

SNR =
Psignal

Pnoise
(5)

where the power of noise is measured by the variance of the error
in the reconstructed data. Higher variance of error will decrease
the value of SNR. We use the logarithmic decibel scale for SNR:
SNRdB = 10 · log10(SNR).

Storage format for different partitioning schemes. For the
regular block-wise partitioning scheme, we only store the estimated
distribution parameters, i.e., the parameters of the Gaussian distri-
butions (mean and standard deviation) and the parameters of GMMs
(means, standard deviations, and weights). Each GMM consists of
3 Gaussian distributions in these experiments. For a partition with a
single Gaussian, we keep two floating points for its parameters, and
for a partition with a GMM, we use 9 floating points for storing the
parameters. Also, we keep a GMM/Gaussian flag for each partition.
In case of the k-d tree partitioning scheme, we additionally need to
store the ids of two corner point locations of the bounding box for
each partition which is stored as integers.

Our SLIC-based method generates irregular partitions and we
keep the cluster ids per point as the additional information. Our
method is designed for a distributed memory environment and the
general assumption is that each node will only process a small sub-
set of data. Furthermore, as we create large homogeneous partitions
using SLIC, the range of the cluster ids for each processing node is
relatively small. So, we use unsigned shorts for storing the cluster
ids which reduces the storage overhead. The point ids for k-d tree
partitioning and the cluster ids for the SLIC-based scheme are both
stored using zlib compression for further storage reduction.

Storage vs SNR results. The performance of storage vs qual-
ity of statistical summarization of: (a) Regular partition based
scheme; (b) K-d tree based scheme; and (c) The proposed SLIC-
based scheme are presented in Table 1. We have tested several data
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Table 1: Experimental results of storage vs SNR (quality) for regular partitioning, k-d tree partitioning, and the proposed SLIC-based partitioning scheme with different parameter

configurations. A specific parameter configuration is highlighted in bold from each of the three methods. By observing these three storage vs SNR results, it can be seen that our

proposed method achieves superior storage-vs-quality trade-off.

Regular block partitioning scheme K-d tree partitioning scheme SLIC-based partitioning scheme

Data set

Raw

data

size

(MB)

Storage

(block

size =

3x3x3)

(MB)

SNR

(dB)

Storage

(block

size =

4x4x4)

(MB)

SNR

(dB)

Storage

(block

size =

5x5x5)

(MB)

SNR

(dB)

Storage

(entropy

th=1.2)

(MB)

SNR

(dB)

Storage

(entropy

th=1.5)

(MB)

SNR

(dB)

Storage

(entropy

th=1.8)

(MB)

SNR

(dB)

Storage

(Apprx.

5x5x5

points

per

cluster)

(MB)

SNR

(dB)

Storage

(Apprx.

6x6x6

points

per

cluster)

(MB)

SNR

(dB)

Storage

(Apprx.

7x7x7

points

per

cluster)

(MB)

SNR

(dB)

Isabel

Pressure
12.5 3.2 11.63 1.5 10.87 0.89 10.39 1.6 13.75 1.1 12.79 0.71 11.72 1.6 24.63 1.4 21.20 1.1 19.78

Isabel Uvel 12.5 2.5 16.29 1.4 14.40 0.85 13.21 3.7 20.18 2.5 18.42 1.5 16.63 2.2 23.61 2 23.11 1.7 21.37

Isabel Tem-

perature
12.5 3.8 23.01 1.7 21.39 0.91 19.96 6.8 25.42 5.9 25.37 3.7 23.84 1.6 26.92 1.3 25.52 1 24.14

Tornado

Uvel
3.5 0.41 18.01 0.24 15.84 0.18 14.27 1.4 23.85 0.86 22.22 0.51 20.76 0.55 28.97 0.43 26.58 0.37 25.89

Combustion 20.7 3.6 19.05 1.9 16.87 1.0 15.35 6.3 18.58 5.6 17.71 3.9 15.73 2.4 29.63 2 28.31 1.6 28.17

Vortex 8.4 1.2 11.91 0.90 9.87 0.57 6.37 7.7 19.79 6.8 17.95 4.7 17.95 1.9 22.68 1.6 21.73 1.4 20.70

(a) Storage vs SNR comparison of Isabel

data.

(b) Storage vs SNR comparison of Tornado

data.

(c) Storage vs SNR comparison of Combus-

tion data.

(d) SNR vs #MC runs for SLIC-based sum-

marization scheme.

Figure 3: Figures 3a-3c present storage vs SNR comparison for different data sets. It is observed that using equal or lower storage, proposed SLIC-based method is able to produce

better Monte Carlo sampling-based data reconstruction. Figure 3d shows the trend of SNR values with different number of Monte Carlo runs. It can be seen that the SNR values

saturate after around 20 Monte Carlo runs. This trend is similar for all the summarization schemes discussed.

sets, described later in our case studies, for conducting these exper-
iments. It is to be noted that, when the partitions are smaller, they
are more likely to become more homogeneous compared to bigger
partitions. This results in a higher quality of statistical summariza-
tion using smaller partitions, but the storage increases. This trend
is common for all the 3 methods. The SNR is higher when the size
of the partitions are smaller, while the storage is also higher.

The quantitative results of the experiments for all the methods
with different parameter configurations are provided in Table 1.
As can be seen, we change the block size for regular partitioning
scheme to vary the number partitions, and measure the quality of
reconstruction in each case by measuring the SNR. In case of the
k-d partitioning scheme, we vary the entropy threshold value to ob-
tain a different number of partitions. It is to be noted that, making
the entropy threshold higher will result in a decrease of the num-
ber of partitions, as well as the storages. However, the SNR will
also decrease. Finally, for our proposed scheme, we are able to use
bigger partitions (smaller storage) and yet achieve better sampling-
based reconstruction quality. The number of clusters are varied by
changing the number of points in each cluster. In Table 1, we have
highlighted a pair of storage and SNR columns in bold from each of
the methods. By comparing these three selected configurations, it
can be easily observed that, the proposed method achieves superior
storage-to-quality trade-off by producing higher SNR values for all
the data sets while using less or comparable storage.

Comparative study among different methods. By using the
data presented in Table 1, a line chart based comparison of these
three partitioning schemes are presented in Figures 3a-3c. Results
of different data sets are shown in separate charts. By studying
these 3 charts, a common observation can be made that our pro-
posed SLIC-based technique produces better sampling-based recon-
struction of data while using comparable or less storage. It can be
seen that by increasing the value of entropy threshold, the storage
of k-d tree based scheme can be reduced, however, as mentioned
above, it will reduce the SNR, i.e., the reconstruction quality as

well. Similarly, we can also create bigger partitions for achieving a
better storage in regular block partitioning by sacrificing accuracy.
Hence, from Figures 3a-3c, we find that, for similar output storage
cost, our proposed method gives superior analysis accuracy among
the three methods.

Effect of different numbers of Monte Carlo runs on sampling
quality. Since we employ Monte Carlo sampling for generating re-
alization of data from the distribution-based summaries, we further
study the effect of different numbers of Monte Carlo runs on the
quality of sampling. Ideally, as was shown in [19], more number of
Monte Carlo runs would make the reconstruction smoother and the
reconstruction quality will increase and eventually will saturate. In
Figure 3d, we show that by increasing the number of Monte Carlo
runs, and taking an average over all the runs while reconstructing,
the reconstruction quality indeed improves. Also, after around 20
Monte Carlo runs, the increase in quality saturates. This trend is
observed for all the three summarization schemes.

Comparison of summarization using: (a) Gaussian only; (b)
GMM only; and (c) our Hybrid scheme. For the same number
of partitions, using only Gaussians for summarization will result in
the smallest storage, and using only GMMs will need the highest
storage. It is expected that the reconstruction quality will be sim-
ilar for hybrid scheme vs only GMMs. In Table 2, we show the
results of the SLIC-based method (with approximately 6× 6× 6
points per cluster) when it is: (a) Gaussian only; (b) GMMs only;
and (c) Hybrid distribution-based scheme; using equal number of
partitions for each. We find that the sampling-based reconstruction
using only GMMs is very similar to the Hybrid scheme. However,
when only Gaussians are used, the quality decreases slightly, but it
is still superior when compared to the regular partitioning and k-d
tree partitioning schemes. This shows that the SLIC partitions are
largely homogeneous and a single Gaussian-based summarization
can be used per partition when further storage reduction is desired,
without compromising the quality much.
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Table 2: Comparison of SNR using fixed number of partitions (approx. 6× 6× 6

points per cluster) for our SLIC-based scheme when: (a) only Gaussian distributions;

(b) only GMM; and (c) Hybrid (Gaussian + GMM) distribution scheme are used for

summarization.

Data set Raw

Size

(MB)

Gaussian

only SNR

(dB)

GMM

only

SNR

(dB)

Hybrid

(Gaussian +

GMM) SNR

(dB)

Isabel Pres. 12.5 21.15 21.35 21.20

Isabel Uvel. 12.5 22.98 23.09 23.11

Isabel Temp. 12.5 25.51 25.86 25.52

Torn. Uvel 3.5 26.16 26.85 26.58

Combustion 20.7 28.01 28.42 28.32

Vortex 8.4 21.22 21.72 21.73

7 VISUAL ANALYSIS

Distribution-based summary data can be used in two ways for an-
alyzing scientific data sets. The first technique is by directly ex-
ploiting the local statistical properties of the data for distribution-
driven classification and feature search. This method does not re-
quire any sampling and analyzes the distributions of the local re-
gions directly for classification. The second method is using Monte
Carlo sampling-based reconstruction of a statistical realization of
the data for visual analytics. For all the visualizations ParaView [3]
was used for rendering the results, and we used 3×3×3 block-size
for regular-partitioning scheme, entropy threshold of 1.2 for k-d
partitioning, and approximate partition size of 6× 6× 6 points per
partition for our slic-based method. In the experiments, we show
that, with lower or comparable storage cost, as reported previously
in Table 1, our method produces better and more accurate visual
quality.

7.1 Distribution-Driven Stochastic Feature Search

Scientific data sets contain features that are not well defined in the
value domain and it is difficult to define such features using pre-
cise threshold values. Several previous works [14, 15, 29, 40] have
shown the use of distributions to represent such features probabilis-
tically. In the absence of a precise value range-based feature de-
scriptor, stochastically-defined features can be searched by using
local distribution-based data summaries. Local regions (partitions)
containing similar distributions that of the target distribution will
be detected. Here we show that by using our distribution-based
summarization, a more accurate and refined feature searching can
be performed. For measuring the similarity between distributions,
we use the Earth Mover’s Distance (EMD), defined by the minimal
transport effort to match two distribution shapes. To compute the
EMD for 1D distributions, we use the match distance as the ground
distance [35], since, the EMD then can be estimated by the absolute
difference between the cumulative distribution functions (CDF) of
the distributions [41].

7.1.1 Feature Search in Tornado Data Set

Our first experiment studies feature searching in a Tornado data set
with spatial dimensions of 96×96×96, and velocity vectors at each
grid point, generated by an analytical equation [12]. The data set
has 50 time steps simulating a tornado-like vortex structure. For
this case study, we use the U-velocity field.

As seen from Figure 4a, the primarily high values of U-velocity
provides a structure of the tornado, which is the feature of interest.
For highlighting the region of interest, the users select a small 3D
box on this region, as shown in Figure 4a to easily select their re-
gion of interest [15]. We collect the data points in this box for defin-
ing the target feature distribution as a GMM. The estimated feature
GMM is shown on the right of Figure 4a. Using an user specified
fixed threshold of 0.1 on the normalized EMD-based distance field,
the detected region is extracted and visualized from the statistical

summary data. Figure 4b and 4c show the results obtained from
regular partitioning scheme (block size = 3× 3× 3), and k-d tree
partitioning scheme (entropy threshold = 1.2). The identified re-
gions contain blocky artifacts on the boundaries as observed from
the results. In contrast, our SLIC-based method partitions data by
its local homogeneity which preserves the feature boundaries more
accurately.

7.1.2 Feature Search in Vortex Data Set

Our second case study shows the result of distribution-driven fea-
ture search in a Vortex data set, which is a pseudo-spectral simula-
tion of coherence vortex structures. The spatial dimensions of this
data set is 128×128×128. The scalar field used in the data is vor-
ticity magnitude containing several tubular vortex cores, which are
the features of interest.

The high vorticity values roughly correspond to the vortex fea-
tures, which can be seen in the Figure 5a. By following a similar
technique as discussed in Section 7.1.1, the target feature GMM is
obtained and shown on the right of Figure 5a. Compared to the pre-
vious Tornado case study, identifying features in this data set is not
easy since there are many features which show similar data prop-
erties, and such features are located separately across the spatial
domain as seen in Figure 5a. Furthermore, there are several vor-
tex features , as shown by black dotted lines in Figure 5a, that are
very small and hence, challenging to be detected. From the results
presented in Figures 5b, 5c, and 5d, we see that our SLIC-based
partitioning method is the best in extracting those vortex features
among the three techniques. The EMD threshold of 0.23 was used
for the extraction of the matched regions. Also, from Figures 5b
and 5c, it is observed that both the regular block-wise scheme and
k-d tree based scheme detect the small features less accurately com-
pared to our proposed method. The shape of those small features
gets distorted as highlighted by red dotted lines in Figures 5b and
5c, whereas the proposed method is able to identify these fine fea-
tures with high accuracy.

7.1.3 Feature Search in Hurricane Isabel Data Set

Hurricane Isabel data is a multivariate time-varying data consisting
of 13 scalar fields. The data set is a courtesy of NCAR and the
U.S. National Science Foundation (NSF), and was created using
the Weather Research and Forecast (WRF) model. The resolution
of the grid for each time step is 250× 250× 50 and there are total
48 time steps. In this study, we use the Pressure field of the data set.

We use the low pressure region which is known as the eye of
the hurricane and is an important feature in the data. We show the
selected region using a small 3D box and the estimated target dis-
tribution in Figure 6a. The results of the detected feature using
different schemes are depicted in Figures 6b, 6c, and 6d. The EMD
threshold of 0.25 was used for this experiment. From the zoomed
view of the detected regions, we see that the blocky artifacts due
to axis-aligned partitioning is visible in both Figures 6b and 6c on
the boundaries. However, we obtain a much smoother and refined
feature matching using our proposed summarization technique as
observed from Figure 6d.

7.2 Sampling-based Data Visualization

Monte Carlo sampling-based reconstruction for visualizing
distribution-based data sets was used previously in [19, 26]. In this
section, we demonstrate that by summarizing the data using our pro-
posed scheme, a more accurate sampling-based visualization can
be achieved compared to the other discussed methods. We use zlib
compression for storing the point ids in k-d partitioning, and cluster
ids in SLIC-based partitioning. Decompression is done in mem-
ory during runtime when cluster information for reconstruction is
required for visualization.
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(a) Feature selection in Tornado data set. The estimated target feature

distribution is shown on the right. The feature is modeled using a mix-

ture of Gaussians.

(b) Distribution similarity-

based identified feature using

regular block partitioning.

(c) Distribution similarity-

based identified feature using

k-d tree partitioning.

(d) Distribution similarity-

based identified feature using

our SLIC-based partitioning.

Figure 4: Distribution data driven probabilistic feature search in Tornado data set.

(a) Feature selection in Vortex data set. The estimated target feature dis-

tribution is shown on the right. The feature is modeled using a mixture

of Gaussians.

(b) Distribution similarity-

based identified feature using

regular block partitioning.

(c) Distribution similarity-

based identified feature using

k-d tree partitioning.

(d) Distribution similarity-

based identified feature using

our SLIC-based partitioning.

Figure 5: Distribution data driven probabilistic feature search in Vortex data set.

7.2.1 Visual Analysis using Hurricane Isabel Data Set

This case study uses the U-velocity field of Hurricane Isabel data
set, which was used earlier in Section 7.1.3. Figure 7 shows the
volume rendered images from the reconstructed data using differ-
ent methods. In Figure 7d we present the result of raw data and a
zoomed view of the core region of the storm showing the high and
low wind speed. This is an important region for U-velocity, since
the wind velocity can reflect the power of the storm. As seen from
the zoomed view on the right of Figure 7a (regular block scheme),
the image produces checker-box-like artifacts (as shown by black
circle in Figure 7a). Note that, this image is produced using a block
size of 3× 3× 3. If we increase the block size, these artifacts will
become even more prominent which further reduces the visual qual-
ity. In comparison, the k-d tree based reconstructed data generates
a comparatively smoother result with fewer artifacts (highlighted
with black dotted lines in Figure 7b), however, a low entropy thresh-
old of 1.2 was used to achieve it which led to increased storage
(see column 9 of Table 1). Finally, Figure 7c depicts the result of
our proposed SLIC-based partitioning scheme (uses approximately
6×6×6 points per cluster), which produces the closest visual qual-
ity to the raw data.

7.2.2 Visual Analysis using Turbulent Combustion Data Set

The Combustion data set is a time-varying turbulent simulation data
set containing 5 chemical variables. The spatial resolution of each
variable is 240×360×60. The data set was made available by Dr.
Jacqueline Chen at Sandia Laboratories through US Department of
Energy’s SciDAC Institute for Ultra-scale Visualization. We used
the mixture fraction variable, which represents the proportion of
oxidizer mass and fuel in the data.

Visualizations generated by different summarization methods us-
ing the mixture fraction variable of Combustion data set are shown
in Figure 8. From the reconstructed image using regular partition-
ing scheme using block size 3×3×3, we see checker-box-like dis-
continuities in Figure 8a marked with red dotted lines. The k-d

tree based reconstruction technique is able to reduce this checker-
box-artifact. However, the result still shows some differences on
the boundary of the flame structures (highlighted with red dotted
lines in Figure 8b) when compared to the raw data in Figure 8d.
In particular, the k-d tree algorithm produces a partition (red dot-
ted region in top right in Figure 8b) which only covers a small
portion of the flame structure. The rest of the region is consid-
ered background, containing homogeneous values. As a result,
this region was not partitioned further by the k-d tree since it satis-
fied the entropy-based termination criterion. During reconstruction,
this causes higher error making it impossible to recover the correct
boundary of the flame structure. Note that, a smaller entropy thresh-
old will divide this region into smaller partitions, thus reducing this
artifact, but consequently the storage cost will increase.

The visualization produced by the proposed SLIC-based parti-
tioning scheme, depicted in Figure 8c, was produced using approx-
imately 6× 6× 6 points per cluster. With the smallest storage, the
SLIC-based visualization matches the raw data the best, preserving
the overall flame structures on both the sides.

8 In Situ APPLICATION STUDY, PERFORMANCE, AND EX-
PERT FEEDBACK

In this section, we present a domain study using a large-scale com-
putational fluid dynamics (CFD) simulation code, TURBO [8, 9],
and demonstrate the applicability of our method for in situ envi-
ronments. TURBO is a high-resolution, Navier-Stokes based, time
accurate CFD code, developed at NASA, and is used to study the
flow instability in transonic jet engine compressors. Our domain
expert studies the characteristics of Pressure values for detecting
the inception of flow instability. Figures 9a-9d show the sampling-
based reconstructed results of Pressure variable, where our pro-
posed method produces higher quality reconstruction compared to
the other methods. The image generated using regular partitioning
and k-d partitioning contain artifacts highlighted with black dotted
lines in Figure 9a and 9b. Furthermore, we study the storage vs
SNR of the three methods and present the results in Figure 9e. We
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(a) Feature selection in Isabel data set.

The estimated target feature distribution is

shown on the right. The feature is modeled

using a mixture of Gaussians.

(b) Distribution similarity-based identi-

fied feature using regular block partition-

ing.

(c) Distribution similarity-based identi-

fied feature using k-d tree partitioning.

(d) Distribution similarity-based identi-

fied feature using our SLIC-based parti-

tioning.

Figure 6: Distribution data driven probabilistic feature search in Hurricane Isabel data set.

(a) Reconstruction using regular block par-

titioning scheme. The block size used is

3× 3× 3. A zoomed view is shown on the

right.

(b) Reconstruction using k-d tree based

scheme. Entropy threshold of 1.2 is used for

this experiment. A zoomed view is shown

on the right.

(c) Reconstruction using proposed SLIC-

based scheme. Relatively large cluster size

(approx. 6×6×6 points per cluster) is used.

A zoomed view is shown on the right.

(d) Raw data (Ground truth). A zoomed

view is shown on the right for better visual

comparison.

Figure 7: Visual comparison of U-velocity of Hurricane Isabel data. The reconstructed fields are generated using Monte Carlo sampling of distribution-based summarized data.

Table 3: In situ timings of our proposed method.

Simulation (hrs) Simulation raw

I/O (hrs)

In situ analysis

(hrs)

In situ I/O

(hrs)

13.217 2.06 1.822 0.015

observe that with equal storage, our method achieves much higher
quality than the other methods. However, the size of raw data out-
put of a single simulation is quite large which makes the analysis
cumbersome and overwhelming for the expert.

We applied our method for summarizing Pressure variable in
situ which only stored the distribution-based summary data. Our in
situ study was done using a cluster, Oakley [6], at the Ohio Super-
computer Center, which contains 694 nodes with Intel Xeon x5650
CPUs (12 cores per node), and 48 GB of memory per node. The
simulation was run with 328 cores for the study, and we ran it for
2 revolutions, resulting in 7200 time steps. In situ call was made
at every 10th time step which required us to process 1.008 TBs of
data for 720 time steps. Note that, the expert used to only write
out raw data at 25-30 time steps without the in situ capability. We
summarized the data of the rotor section of the model, by directly
accessing the simulation memory without any additional data copy.
During in situ processing, we generated the partitioning using slic
and summarized the partitions with our hybrid distribution-based
scheme. The raw simulation outputs 5 variables in multi-block
plot3d format, and the raw data size for the rotor section is 690
MB per time step, i.e., 496.8 GB for just 2 revolutions. The domain
of the compressor consists of 36 blocks (blade passages), and the
spatial resolution of each block is 151× 71× 56. In contrast, the
size of our summarized data for Pressure variable is only 10.8 GB,
i.e., around 54 GB for all 5 variables, using SLIC-based summa-
rization with approximately 6×6×6 points per partition, resulting
in a significantly smaller data. Table 3 shows the timings of the in
situ run for this study. We see that our method takes about 13.5%
of the simulation time for analyzing the data and summarizing it.
In contrast, post-hoc SLIC-based partitioning and summarization
on a standard Linux machine with an Intel core i7-2600 CPU, 16
GB of RAM, and 1 TB HDD using OpenMP parallelization, takes
73.5 secs on average per time step, i.e., about 14.7 hrs for process-
ing 720 time steps. Furthermore, the computation time for Monte

Carlo sampling for all the 720 time steps took 2.96 hrs including
the I/O time.

Domain expert feedback. We presented the results to the do-
main scientist. The expert agreed that, the reduced summary data
accelerates the post-hoc analysis, which can be used as a replace-
ment of the raw data for exploration. The expert was particularly
impressed by the reconstruction quality that we achieved with our
method over the existing techniques. Also, the expert acknowl-
edged that, by transforming the data into a distribution-based rep-
resentation, a wide range of visual-analytics can be done using it.
With our in situ data triage and summarization, the expert now can
keep higher temporal resolution of data by storing more time steps
than before, which will help in a more precise temporal event de-
tection. Hence, the expert feels that the additional computational
time spent for in situ analysis is well justified, given the benefits it
offers during exploratory post-hoc analysis. Finally, the domain ex-
pert also suggested to extend our method for multivariate and vector
fields which will increase the usefulness of the method.

9 DISCUSSION

The regular partitioning requires minimum storage for same num-
ber of partitions among these techniques, because the partition
bounds are implicit, so, no additional storage is necessary. How-
ever, the quality of sampling-based data reconstruction, and proba-
bilistic feature analysis using regular block-based summary data is
found to be less effective, since this method does not consider data
value coherency, resulting in partitions with high value variance.
The key difference between regular partitioning, k-d tree partition-
ing, and SLIC-based scheme is that, the last two methods aim at
reducing value variation while creating the spatial partitions. Never-
theless, for finding spatially homogeneous regions, k-d partitioning
often divides the data into many smaller axis-aligned regions which
causes higher storage. Note that, we can reduce the storage of k-d
based scheme by changing the k-d tree decomposition termination
criterion, but, that will also reduce the summarization quality.

Our SLIC-based partitioning works by generating irregular parti-
tion shapes. With this, SLIC captures data homogeneity better than
the other two methods. It minimizes data value variation inside each
partition, and enables more accurate statistical data summarization.
From the three selected parameter configurations highlighted in Ta-
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(a) Reconstruction using regular block par-

titioning scheme. The block size used is

3×3×3.

(b) Reconstruction using k-d tree based

scheme. Entropy threshold of 1.2 is used

for this experiment.

(c) Reconstruction using proposed SLIC-

based scheme. Relatively large cluster size

(approx. 6 × 6 × 6 points per cluster) is

used.

(d) Raw data (Ground truth).

Figure 8: Visual comparison of Mixture Fraction of Combustion data. The reconstructed fields are generated using Monte Carlo sampling of distribution-based summarized data.

(a) Reconstruction using regular

partitioning scheme. The block

size is 3× 3× 3. A zoomed view

is shown on the right.

(b) Reconstruction using k-d tree

based scheme. Entropy threshold

of 1.2 is used. A zoomed view is

shown on the right.

(c) Reconstruction using SLIC-

based scheme. Approx. 6 ×

6 × 6 points per cluster is used.

A zoomed view is shown on the

right.

(d) Raw data (Ground truth). A

zoomed view is shown on the right

for better visual comparison.

(e) Storage vs SNR comparison

of Turbine data.

Figure 9: Figures 9a-9d: visual comparison of Pressure field of Turbine data set. The reconstructed fields are generated using Monte Carlo sampling of summarized data. Figure 9e:

storage vs quality comparison of turbine data set. It is observed that, with similar storage, proposed method produces more accurate visual quality.

ble 1, we find that, SLIC-based summarization preserves the sta-
tistical data properties more accurately, reflected by the best SNR-
to-storage ratio. Using larger partitions, we effectively summarize
a smaller number of partitions when compared to the other two
methods, which is the primary reason that we have the best SNR-
to-storage ratio. We achieve superior partitioning through irregular
shaped cluster representation and compact distribution-based sum-
marization with compressed cluster id information.

However, the introduction of irregular shaped partitions in our
method has resulted in an storage overhead of cluster ids per point,
which can be regarded as a potential limitation. An improved
method for storing cluster information will make our method even
more storage efficient. Finally, we have successfully applied our
method to a large-scale CFD data set to demonstrate the in situ ca-
pability of our method. Positive feedback from our domain expert
further show the effectiveness of our method for summarizing large-
scale data sets for flexible post-hoc analysis.

10 CONCLUSIONS AND FUTURE WORK

We present a local homogeneity-driven partitioning based stochas-
tic data summarization technique for large-scale data analysis and
visualization. We demonstrate the efficacy of our method by con-
trasting our proposed method with the existing statistical data sum-
marization techniques. We show that our method works in situ
and preserves statistical data properties through a superior partition-
based summarization, which allows effective probabilistic feature
analysis and visualization. In this work, we process each time step
separately. However, we wish to extend our method for partitioning
multiple time steps together such that a time-window will share the
same partitioning. This scheme will further reduce the storage as
multiple time steps will share same clustering information. Also,
we want to extend this work for summarizing of multivariate data
sets, and employ it on other scientific applications for assisting do-
main scientists.
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