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Abstract. We extend the definition of the classic instantaneous vector
field saddles, sinks, and sources to the finite-time setting by categorizing
the domain based on the behavior of the flow map w.r.t. contraction
or expansion. Since the intuitive Lagrangian approach turns out to be
unusable in practice because it requires advection in unstable regions,
we provide an alternative, sufficient criterion that can be computed in
a robust way. We show that both definitions are objective, relate them
to existing approaches, and show how the generalized critical points and
their separatrices can be visualized.
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1 Introduction

The topological analysis of time-dependent vector fields remains to this day a
very active research area in flow visualization. Similar to the classic steady case,
we expect that particle motion is guided by a number of topological elements
that have mainly been investigated individually, such as vortices [56, 15, 19], sep-
arating structures [21, 54, 37] and attractors [59]. In this paper, we introduce a
finite-time generalization of the classic 2D vector field topology that maintains
physical meaning in time-varying flows. In particular, we request the following
properties for the topological structures to be meaningful over finite-time win-
dows:

– In steady flows, the method is consistent with classic vector field topology.
– The definition of topological elements is objective, i.e. invariant w.r.t. Galilean

transformations of the frame of reference.
– The feature definition is pathline-oriented and therefore in accordance with

particle movement.

In a nutshell, the contributions of this work are as follows

– A coherent theoretical framework of an objective Lagrangian finite-time flow
topology that ties together approaches from the literature.

– A non-Lagrangian sufficient definition that exceeds its Lagrangian counter-
part in robustness.

– A simple algorithm for the extraction based on first-order approximation.
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– Efficient visualizations of the finite-time topology.

Reviewing related work (Section 2), suggests a Lagrangian definition of finite-
time topology as a logical consequence, because it bridges the gap between sev-
eral approaches. Unfortunately, we will see quickly that it is practically useless
because of its lack of robustness (Section 3). Therefore, we will dedicate most
of this paper to the theoretical analysis of a non-Lagrangian alternative, which
forms a sufficient criterion for the intuitive Lagrangian definition (Section 4).
Finally, we will showcase results and suggest visualizations.

2 Related Work

Classic Steady Vector Field Topology. Classic steady vector field topology pro-
vides us with a compact description of the asymptotic motion of particles [41,
25]. Governing the asymptotic motion are a number of topological elements,
which were described by Helman and Hesselink [26], including critical points
(sinks, sources, centers, saddles), boundary elements (attachment and detach-
ment points),the manifolds that separate flow regions of homogeneous asymp-
totic behavior (separatrices), and periodic orbits [2]. The extension to the 3D
case [27] gave rise to a broader variety of elements, such as bifurcation lines [39]
(lines to which nearby streamlines are asymptotically drawn to or repelled away
from at an exponential rate) or saddle connectors [52] (individual streamlines
that connect saddles). Aside from characterizations as extremal lines [32] of
vortex-related scalar fields [46, 47], vortex corelines have also been expressed as
lines along which the velocity vector aligns with the single real-valued eigen-
vector of the Jacobian matrix [51]. The parallel vectors operator [38] became
a very powerful descriptor for such line features. In fact, both vortex corelines
and bifurcation lines can be expressed in this way, with the only difference being
that vortex corelines require swirling motion [38] (complex eigenvalues in the
Jacobian) and bifurcation lines require attracting and repelling behavior [43,
37] (negative determinant in the plane orthogonal to the flow). Extensions in-
clude the characterization of higher-order critical points into sectors of elliptic,
parabolic, or hyperbolic behavior [48, 7, 58] and higher-order bent vortex core-
lines [44].

Streamlines vs. Pathlines. More recent research concentrated on the definition
and extraction of topological structures in time-dependent flows [40], in which
we face two major challenges. First, aside from periodic flows, the temporal
domain is usually bounded, which does not permit the observation of asymptotic
motion. Second, the topology of streamlines (i.e., the observation of individual
time slices) is irrelevant for pathlines, which was for instance demonstrated for
vortex corelines [56]. The difference between streamline-oriented and pathline-
oriented topology was discussed by Theisel et al. [53] in detail. Wiebel et al. [59]
demonstrated in a simple 2D rotating petri-dish example that most existing
techniques fail to detect the attracting vortex center that moves on a circular
path. In the literature, this flow is sometimes also referred to as the Beads
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problem [57]. Integration-based methods can find the coreline, including the
particle density estimate to extract the preferential particle settling [59] and the
vortex coreline in the vector field in which streaklines are tangent curves [57].
Local methods failed due to lack of rotation invariance in the feature definitions,
which can be obtained by a deformation from Cartesian to polar coordinates [17].

Reference Frames. A number of methods suggest to reduce the time-dependent
topology back to the steady case by a suitable choice of the reference frame.
Wiebel et al. [60] and Bhatia et al. [3] used flow decompositions to subtract a
flow component that is irrotational and incompressible, i.e., harmonic. Fuchs et
al. [13] selected a reference frame in which the velocity vanishes at locations at
which the acceleration is zero. Bujack et al. [5] selected extrema in the determi-
nant of the Jacobian to determine the reference frame. To determine a reference
frame in which the vector field becomes steady [36, 42], reference frames have
been calculated by local [15, 18] and global [19] linear optimizations, as well
as by deep learning [31]. Alternatively, several local feature definitions possess
a certain reference frame invariance. However, most of them, are only invari-
ant to equal-speed translations, e.g., vorticity, λ2 [29], and the Q-criterion [28].
Objectivity is achieved only by a few, such as by the instantaneous vorticity
deviation [23].

Lagrangian Coherent Structures. In contrast to the local approaches, a large
body of research searched for structures that behave coherently over a finite-
time window. This research includes region-based vortex methods [23], coherent
sets [12], and coherent line and surface structures, typically called Lagrangian
coherent structures (LCS) [22]. The latter results in material lines that order the
flow, including jet cores (parabolic LCS), vortex boundaries (elliptic LCS) and
separating structures (hyperbolic LCS). As approximation to hyperbolic LCS,
Haller [24] suggested to use the finite-time Lyapunov exponent (FTLE) [49],
which measures the separation of nearby-released particles over a finite-time win-
dow. A number of approaches to compute FTLE exist, including a discretization
of the flow map [24], localized FTLE [30], timeline cell tracking [33], a direct sam-
pling of an advected circle [55] and Monte Carlo rendering [16]. Later, Haller [21]
suggested to extract hyperbolic LCS by looking for the biggest separation or-
thogonal to a material surface. Similarly, Friederici et al. [11, 10] analyzed the
finite-time separation orthogonal to a separatrix in steady flows.

Time-dependent Saddles. Theisel et al. [53] categorized pathlines into attrac-
tors, repellors, and saddle-like trajectories based on whether their surrounding
pathlines converge toward it in forward integration, in backward integration, or
neither. In the fluid dynamics community, Haller [20] defined uniformly hyper-
bolic trajectories as pathlines with the property that half of their neighboring
pathlines converge toward them in forward direction and the other in back-
ward direction. Further, he introduced the concept of hyperbolicity time as the
maximal amount of time a pathline spends in a region in which the Jacobian de-
terminant is strictly negative and shows that the local maxima of hyperbolicity
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(a) Timestep 0. (b) Timestep 5. (c) Timestep 10. (d) Timestep 15. (e) Timestep 20.

Fig. 1: The Lagrangian definition is not robust. Categorization of the pathlines of
the accelerated translation of a steady saddle is visualized through color coding:
red– source; blue– sink; white– saddle. Theoretically, the saddle in the center of
timestep 0 should move once around on a circle around the origin of coordinates.
Instead it is fully driven away by the expanding regions.

time are a first approximation to the uniformly hyperbolic trajectories. Inspired
by Haller’s hyperbolic trajectories [20], Sadlo and Weiskopf [45] generalized the
concept of saddle-type critical points to time-dependent vector fields using the
intersections of forward and backward FTLE ridges. The motivation behind this
choice is that just like saddles, these areas show divergent behavior in forward
as well as backward direction in time. As introduced by Wiebel et al. [61], they
used these points as seeds for generalized streaklines, which form a generalization
of separatrices to time-dependent flows. Later, Üffinger et al. [54] extended the
concept to 3D. To approximate the path of a saddle, i.e., a bifurcation line in 2D
space-time, Machado et al. [37] applied the reduced velocity criterion [51, 38] and
iteratively aligned the extracted bifurcation line with the flow to obtain a path-
line. In his recent survey on LCS, Haller [22] formulated four desirable properties:
objectivity, finite-time nature, Lagrangian invariance, and spatial convergence.
He points out that most classic definitions of material stability look strictly in
forward direction to assess repelling behavior and strictly in backward direction
to assess repelling behavior. Instead, repelling and attracting behavior should
be assessed over the full time window, i.e., both forward and backward from
the current point in time. He rejecteds Shadden’s definition of LCS as second
derivative ridges [49] and suggests shrink lines and stretch lines as LCSs [8, 9].

3 Intuitive Approach

Many attempts to generalize classic vector field topology to a time-dependent
setting are based on translating the convergence and divergence properties of
the classic critical points to pathlines. Most approaches deal with saddles [45,
20, 21, 4]. A few take into account sources or sinks, too [53, 59]. In this paper,
we also base our categorization on that pulling together existing work into one
coherent framework. Intuitively speaking, we consider a pathline a Lagrangian
finite-time saddle if part of its neighborhood has attracting behavior and part
of its neighborhood has repelling behavior. We consider it a Lagrangian finite-
time sink if all of its neighborhood has attracting behavior, and a Lagrangian
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(a) FTLE ridges for the saddle under ac-
celerated translation do not intersect.

(b) They intersect almost everywhere for
the saddle under accelerated translation.

Fig. 2: Lagrangian intersection of forward and backward FTLE is not robust.

finite-time source if all of its neighborhood has repelling behavior. The term
Lagrangian or Lagrangian invariant refers to the ability of a structure to move
with the flow, i.e. to be invariant w.r.t. advection [22]. We translate this into a
concise mathematical definition.

Definition 1 (Lagrangian Finite-time Topological Categories) We con-
sider a point and time (x0, t) ∈ Rd × R a Lagrangian finite-time saddle for a
given time interval t ∈ [t0, t1] ⊂ R if for any ε > 0, we can find a plane con-
taining 4 points x1, ..., x4 ∈ Bε(x0) in its ε-neighborhood (numbered in positive
orientation around x0) so that the pathlines starting at (x1, t) and (x3, t) will
expand from x0 forward in time until t1 while (x2, t) and (x4, t) contract. We
consider it a Lagrangian finite-time sink if there is an ε0 > 0 such that for all
ε : ε0 > ε > 0, a pathline starting at any point x ∈ Bε(x0) in its ε-neighborhood
will contract to x0 and a finite-time source if it expands.

To categorize the steady flow behavior in finite-time, we define contraction
and expansion as follows:

Definition 2 (Finite-time Contraction and Expansion) We consider two
trajectories x0(t), xi(t) : R → Rd expanding in forward time for a given finite-
time interval t ∈ [t0, t1] if ‖x0(t0)− xi(t0)‖ < ‖x0(t1)− xi(t1)‖ and contracting
if ‖x0(t0)− xi(t0)‖ > ‖x0(t1)− xi(t1)‖. Expansion in forward time is equivalent
to contraction in backward time and vice versa.

Definition 1 is objective [50] and Lagrangian invariant [22], i.e. it is advected
by the flow. It is not able to classify centers and it does not always coincide
with the steady topology, for example for linear fields. It is straightforward and
very intuitive and nicely ties together different related work, but it suffers from
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a significant drawback. In practice, it is pretty much unusable because it is not
robust. The categorization of the different pathlines at time t0 works just fine,
but to determine where these areas of a category go, we have to integrate along
unstable manifolds that strongly deflect the pathlines, Figure 1.

Impossibility of integration purely along stable manifolds. To advect in a robust
way, an idea would be to make use of the backward integration [45, 20, 21]. But
advecting forward the forward time attracting regions (sinks and part of the
saddles) and advecting backward time attracting regions (sources and the other
part of the saddles) backward in time does not work either, because the saddle
lies on a repelling manifold for both directions. This part will be deflected no
matter from where we integrate. Figure 2 illustrates the problem in space-time.
Theoretically, the saddle lies on the intersection line of the attracting manifolds
in forward and backward direction. But due to the strong deflection, the surfaces
may not intersect at all or become aligned.

4 Theory

In this section, we will provide a definition of a non-Lagrangian finite-time topol-
ogy, which is a necessary condition for the intuitive Definition 1, but allows for
a robust extraction. We will study its properties and derive an algorithm for its
efficient computation based on its first-order approximation.

4.1 Mathematical Definition

Analogously to the Lagrangian Definition 1, we state a concise mathematical
definition that concisely describes the intuitive physical categorization of the
domain into contracting and expanding regions. The first of the two main differ-
ences is that we no longer require these regions to be Lagrangian, which means
that instead of categorizing pathlines, we categorize points in space and time.
Second, we explicitly consider these point’s contracting and expanding behavior
(Definition 2) in forward and also in backward time.

Definition 3 (Finite-time Topological Categories) We consider a point in
space and time (x0, t) ∈ Rd ×R a finite-time saddle for a given time interval
t ∈ [t0, t1] ⊂ R if for any ε > 0, we can find 4 points x1, ..., x4 ∈ Bε(x0) in its ε-
neighborhood (numbered in positive orientation around x0) so that the pathlines
starting at (x1, t) and (x3, t) will expand from x0 forward in time until t1 and
contract backward until t0 while (x2, t) and (x4, t) do the opposite. We consider
it a finite-time sink if there is an ε0 > 0 such that all ε : ε0 > ε > 0, so that
a pathline starting at any point x ∈ Bε(x0) in its ε-neighborhood will contract
to x0 forward in time until t1 and expands backward until t0 and a finite-time
source for the opposite.
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4.2 Relation to the Lagrangian Definition

Definition 3 is sufficient for Definition 1, which means that every point in space
and time that is classified as a finite-time saddle/source/sink lies on a pathline
that is classified as a Lagrangian finite-time saddle/source/sink.

To see that, let

F t1t0 : R× R× Rd → Rd, t× t0 × x0 7→ F t1t0 (x0), (1)

with

F t0t0 (x0) =x0,

F t2t1 (F t1t0 (x0)) =F t2t0 (x0),
(2)

denote the flow map describing how a flow parcel at (x0, t0) moves to F t1t0 (x0)
in the time interval t1 − t0. Then, we can compactly write the conditions in
Definition 3. For a saddle, there exist xodd, xeven such that:

‖F t1t (xodd)− F t1t (x0)‖ > ‖xodd − x0‖,
‖F t1t (xeven)− F t1t (x0)‖ < ‖xeven − x0‖,
‖F t0t (xodd)− F t0t (x0)‖ < ‖xodd − x0‖,
‖F t0t (xeven)− F t0t (x0)‖ > ‖xeven − x0‖,

(3)

for a sink for all xi holds:

‖F t1t (xi)− F t1t (x0)‖ < ‖xi − x0‖,
‖F t0t (xi)− F t0t (x0)‖ > ‖xi − x0‖,

(4)

and for a source for all xi holds:

‖F t1t (xi)− F t1t (x0)‖ > ‖xi − x0‖,
‖F t0t (xi)− F t0t (x0)‖ < ‖xi − x0‖.

(5)

From this, we can directly derive the properties of the pathline through (x0, t).
We will show this for the case of a source. Assume (5) holds then at time t0, all
points (F t0t (xi), t0) in the neighborhood of the starting location of this pathline
(F t0t (x0), t0) satisfy

‖F t0t (xi)− F t0t (x0)‖
(5)
< ‖xi − x0‖

(5)
< ‖F t1t (xi)− F t1t (x0)‖, (6)

which is the condition for the pathline to be a Lagrangian finite-time source. The
size of ε0 in Definition 1 depends on the respective flow field, but its existence is
guaranteed if it is continuous, because the flowmap is as many times differentiable
as the vector field [1]. The other cases work analogously.
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4.3 Objectivity

We consider objectivity [50] important because this property ensures that two
observers do not get different answers from looking at the same physical phe-
nomenon. Within the flow, smaller features get advected by larger ones, which
results as a mixture of different ’best’ reference frames to look at the flow.
Definition 3 is objective, i.e. invariant w.r.t a Euclidean transformation of the
reference frame x′ = Q(t)x + c(t) with a time-dependent orthogonal matrix
Q : R →∈ SO(d) and a translation c : R → Rd. This follows from the transfor-
mation properties of the flowmap under Euclidean transformations F ′

t1
t0(x′0) =

Q(t1)F t1t0 (x0)− c(t1) [35], because of which the difference suffices

F ′
t1
t0(x′0)− F ′t1t (x′i) = Q(t1)F t1t0 (x0)− c(t1)−Q(t1)F t1t (xi) + c(t1)

= Q(t1)(F t1t0 (x0)− F t1t (xi))
(7)

and the distance

‖F ′t1t0(x′0)− F ′t1t (x′i)‖2 = (F ′
t1
t0(x′0)− F ′t1t (x′i))

T (F ′
t1
t0(x′0)− F ′t1t (x′i))

(7)
= (Q(t1)(F t1t0 (x0)− F t1t (xi)))

T (Q(t1)(F t1t0 (x0)− F t1t (xi)))

= (F t1t0 (x0)− F t1t (xi))
TQ(t1)TQ(t1)(F t1t0 (x0)− F t1t (xi))

= (F t1t0 (x0)− F t1t (xi))
T (F t1t0 (x0)− F t1t (xi))

= ‖F t1t0 (x0)− F t1t (xi)‖.
(8)

4.4 Linear Approximation

The difference between two close points can be approximated using Taylor’s
theorem. In our case, the conditions (3) to (5) can be expressed using the defor-
mation gradient ∇F : Rd×d

F t1t (x0)− F t1t (xi) = ∇F t1t (x0)(xi − x0) +O(‖xi − x0‖2). (9)

For the limit ε→ 0, we can write its magnitude as

‖F t1t (x0)− F t1t (xi)‖2 = (F t1t (x0)− F t1t (xi))
T (F t1t (x0)− F t1t (xi))

= (x0 − xi)T (∇F t1t (x0))T∇F t1t (x0)(x0 − xi).
(10)

The first part of condition (5) can be rewritten as the ratio

‖F t1t (x0)− F t1t (xi)‖
‖x0 − xi‖

> 1. (11)

With the unit vector

n =
x0 − xi
‖x0 − xi‖

(12)
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and the Cauchy-Green strain tensor Ct1t0 (x0) = (∇F t1t0 (x0))T∇F t1t0 (x0) from con-
tinuum mechanics, the ratio (11) can be estimated through

‖F t1t (x0)− F t1t (xi)‖2

‖x0 − xi‖2
= nT (∇F t1t (x0))T∇F t1t (x0)n = nTCt1t (x0)n. (13)

Because of

‖F t1t (x1)− F t1t (x3)‖
‖x1 − x3‖

> 1⇔ ‖F
t1
t (x1)− F t1t (x3)‖2

‖x1 − x3‖2
> 1 ⇔ nTCt1t (x0)n > 1,

(14)
the conditions in (3) to (5) can be expressed through the eigenvalues of C. Since
the eigenvectors maximize max‖n‖=1 |nTCn|, the conditions are transferred to
the eigenvalues. In particular, for a point (x0, t) to be a first-order approximation
to the finite-time saddle in the interval [t0, t1], the tensors Ct1t (x0) and Ct0t (x0)
must each have eigenvalues greater as well as smaller than 1. The eigenvalues
need to be both smaller than 1 for Ct1t (x0) and both greater than 1 for Ct0t (x0)
for a point to be a first-order approximation of a finite-time sink and the opposite
for a finite-time source.

The linear approximation is also objective. Because of ∇x′x = d x
d x′ = QT and

the chain rule [35], the deformation gradient suffices:

∇F t1t0
′
(x′) = Q(t1)∇F t1t0 (x)Q(t0)T . (15)

and the Cauchy-Green strain tensor

Ct1t0
′
(x′) = (∇F t1t0

′
(x′))T∇F t1t0

′
(x′)

= (Q(t1)∇F t1t0 (x)Q(t0)T )TQ(t1)∇F t1t0 (x)Q(t0)T

= Q(t0)((∇F t1t0 (x))T∇F t1t0 (x))Q(t0)T

= Q(t0)Ct1t0 (x)Q(t0)T .

(16)

This approximation is not necessarily objective, because it has two time depen-
dencies that the definition of objectivity does not encompass, but its eigenvalues
are objective. Let v be an eigenvector of C ′ with eigenvalue λ, i.e. Cv = λv, then
ṽ = Q(t0)v is an eigenvector of C with the same eigenvalue

C ′ṽ
(16)
= Q(t0)Ct1t0 (x)Q(t0)T ṽ = Q(t0)Ct1t0 (x)v = Q(t0)λv = λQ(t0)v = λṽ. (17)

4.5 Strength

As can be seen in Figure 1, Definitions 1 and 3 usually do not produce isolated
points but areas of coherent classification. For each connected component of one
category, we can choose a point as a representative through demanding that
it shows the corresponding contracting or expanding behavior in locally the
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strongest way, for example for the saddle through maximizing

M t1
t0 (x0, t) := max

xodd,xeven∈Bε(x0)
min(

‖F t1t (xodd)− F t1t (x0)‖
‖xodd − x0‖

,
‖xeven − x0‖

‖F t1t (xeven)− F t1t (x0)‖
,

‖xodd − x0‖
‖F t0t (xodd)− F t0t (x0)‖

,
‖F t0t (xeven)− F t0t (x0)‖

‖xeven − x0‖
),

(18)
for the sink through maximizing

M t1
t0 (x0, t) := min

xi∈Bε(x0)
min(

‖F t1t (xi)− F t1t (x0)‖
‖xi − x0‖

,
‖xi − x0‖

‖F t0t (xi)− F t0t (x0)‖
), (19)

and for the source through maximizing

M t1
t0 (x0, t) := min

xi∈Bε(x0)
min(

‖xi − x0‖
‖F t1t (xi)− F t1t (x0)‖

,
‖F t0t (xi)− F t0t (x0)‖

‖xi − x0‖
). (20)

The inner most min refers to the minimum of the forward and backward terms to
avoid the detection of examples that only exhibit the behavior in one direction.
The second min avoids line sinks and sources, which do not have expanding or
contracting behavior in one direction. The outer most maximization refers to the
candidate points x0 that exhibit the respective behavior in locally the strongest
way.

4.6 Weighting Related to FTLE

The first-order approximation shows that our measures of strength are related
to FTLE, where the largest eigenvalue λmax of the Cauchy-Green strain tensor
C is evaluated. To consider the dependence on the size of the time interval and
the potentially rapid growth of the expansion, λmax is weighted via

λ̃max(Ct1t0 (x0)) := FTLEt1t0 (x0) =
log
√
λmax(Ct1t0 (x0))

t1 − t0
, (21)

Analogously, we can weight the largest and smallest eigenvalue λmax, λmin of
the Cauchy-Green strain tensor for weighted first-order approximations of our
measures of strength. The logarithm changes the limit where changes between
the categories happen to 0, which leads to the following cases

(x0, t) is a



saddle if λ̃max(Ct1t ) > 0 ∧ λ̃min(Ct1t ) < 0 ∧ λ̃max(Ct0t ) > 0

∧λ̃min(Ct0t ) < 0 ∧ vmax(Ct1t ) ∦ vmin(Ct0t ),

source if ∧ λ̃min(Ct1t ) > 0 ∧ λ̃max(Ct0t ) < 0,

sink if ∧ λ̃max(Ct1t ) < 0 ∧ λ̃min(Ct0t ) > 0

neither else.

(22)
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Please note that for a first-order saddle, we additionally have to make sure that
the directions of the strongest expansion in forward and backward time do not
coincide to guarantee that there are really 4 separate points xi as demanded in
Definition 3 instead of xodd as suggested in forward time to coincide with xeven
as suggested by backward time, which would occur for example for a blue sky
bifurcation, i.e. a flow that is first a sink and then turns into a source or vice
versa.

That also means that we can directly use the absolute value of the weighted
eigenvalues to determine how strong the contracting or expanding properties of
each point are. In particular, we use the minimum over all four λ̃

M̃ t1
t0 (x0, t) := min

i∈{0,1}
min

j∈{min,max}

|λ̃j(Ctit (x0))|
|ti − t|

. (23)

If a point does not fall into a category (for example, it is a source in forward
time and saddle in backward time), we set the strength to zero. If a point is a
saddle, we additionally weight it by the scalar product across the eigenvectors
to exclude areas where they coincide in forward and backward direction. All in
all, we get the measure of strength

Mt1
t0(x0, t) =


M̃ t1
t0 (x0, t) if source or sink,

|vmax(Ct1t )T vmin(Ct0t )|M̃ t1
t0 (x0, t) if saddle,

0 else.

. (24)

We compute this scalar measure of strength for the whole domain, which will
allow us to determine strong representatives for coherent regions of the same be-
havior and to remove weak occurrences for reducing clutter in the visualizations.
Since, the eigenvectors are orthogonal, we do not need to consider the other pair.

The measure of strength is also objective. We already know that the eigenval-
ues are objective from (17) and we can see that the product of the eigenvectors
v1(Ct1t (x0))T v2(Ct0t (x0)) is objective, too, because their transformed equivalents
suffice

v′1(Ct1t
′
(x′0))T v′2(Ct0t

′
(x′0))

(17)
= (Q(t)v1(Ct1t (x0)))TQ(t)v2(Ct0t (x0))

= v1(Ct1t (x0))T v2(Ct0t (x0)).
(25)

4.7 Separatrices

It is common practice to use generalized streaklines [61] seeded around the locally
strongest saddles, sometimes also called bifurcation lines in space-time, [45, 54,
37]. In particular, we seed pathlines with a small offset in both directions of the
eigenvector vmax(Ct1t (x0)) corresponding to the bigger eigenvalue for the forward
separatrix advection and analogously with a small offset in both directions of
the eigenvector vmax(Ct0t (x0)) for the backward separatrix. Then, we generate
surfaces from them in space-time. Figure 5 shows a visualization. The temporally
local sepratrices can be produced from slicing the volume at one timestep.
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(a) Timestep 1. (b) Timestep 5. (c) Timestep 10. (d) Timestep 15. (e) Timestep 19.

Fig. 3: The non-Lagrangian definition correctly categorizes the pathlines of the
accelerated translation of a steady saddle. Red: source, blue: sink, white: saddle,
black: neither. We show the strength of each region by overlaying (24) ranging
from black for low strength to transparent for high strength.

5 Experiments

In this section, we concentrate mainly on experiments for which we actually
know the ground truth to demonstrate the correctness of the proposed method.
For this purpose, we use two analytic data sets. The first one is a steady saddle

v(x) = v(x, y) = 2

(
x+ 0.5
−y

)
e−2
√

(x+0.5)2+y2 (26)

that is moved through an accelerated translation. A Euclidean transformation

x′ = Q(t)x+ c(t) (27)

changes a velocity field via

v′(x, t) = Q(t)v(QT (t)(x− c(t))) + Q̇(t)(x− c(t)) + ċ(t). (28)

We use c(t) = 1
2 (sin(θ) + 1, cos(θ))T with θ = 2πt2/|T |2 and |T | denoting the

number of time steps, which moves the saddle clockwise on the circle with radius
0.5 around (0, 0)T starting at (0, 0.5)T . The motivation of using accelerated
moving reference frames is that this is the most complicated case. If a method
detects this one correctly, it will also work for constant movements. We have
already seen the results of the Lagrangian categorization for this dataset in
Figure 1. The results of the robust categorization using the suggested sufficient
first-order approximation suggested in this work can be found in Figure 3. This
figure shows the expected behavior with the accelerated movement around the
origin. On top of the category, we also encode the strength of the occurrence
fading out weak areas into black. This approach is consistent with color-coding
black areas that belong in no category. Please note that the two sources (red) and
two sinks (blue) around the saddle (white) are a result of the Gaussian weighting
in combination with the saddle. The actual expanding and contracting character
of these regions can be well perceived in the particle view Figure 1 offers.

The second analytic dataset is the same saddle (26) performing an accelerated
rotation with Q(t) ∈ SO2 being the rotation matrix by θ = 2πt2/|T |2. For both
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(a) Categories of saddle un-
der accelerated translation.

(b) Separatrices of saddle
under acc. translation.

(c) Categories and separa-
trices of translation.

(d) Categories of saddle un-
der accelerated rotation.

(e) Separatrices of saddle
under acc. rotation.

(f) Categories and separa-
trices of rotation.

Fig. 4: Visualizations of the finite-time topology in space-time for two examples of
Euclidean transformations. Left: isosurfaces of the strength colored by category.
Red– source; blue– sink; white– saddle. Middle: separatrices, i.e. streak surfaces
forward (red) and backward (blue) in time seeded at the strongest saddle offset in
the direction of the eigenvectors of the Cauchy Green strain tensor. Right: both.
The path of the saddle is one full circle in both cases. The shapes of the sinks,
sources, and separatrices reveal that the top movement is a pure translation,
whereas the bottom is a rotation.

flows, we use the spatial domain [−2, 2]2 with resolution 812 and the full 21 time
steps [t1, t1] = [0, 20]. To avoid boundary artifacts, we computed the flowmap
on a bigger domain. Both transformations are purely Euclidean. They can be
interpreted as a change of the reference frame of the observer and an objective
method should be able to detect the saddle on the circle.

Figure 4 shows the results of the classification and the separatrices for both
transformations in space-time. We visualize the different categories using the
same color coding. Saddles are white, sources are red, sinks are blue, and points
that fall in no category are black. For the reduction of weak occurrences to
gain a less cluttered, more expressive visualization, we applied isocontours on
the scalar strength field (24) and colored the result using the scalar field of the
categories (22). Storing the two fields makes the visualization of the method
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easy in any common visualization tool. To get the separatrices for each time
slice, we first chose representatives for the saddle-type regions by selecting the
locations with the global maximum of the strength. Then, we seeded pathlines
as described in Section 4.7. Our method detects the true locations of the saddle
up to the accuracy of one cell. It cannot find the exact location within a cell,
because the maximum always lies on a gridpoint in a piecewise linear field.

For these datasets, the intersection of forward and backward FTLE as sug-
gested by Sadlo [45] produces the same results. The Lagrangian forward and
backward FTLE produces no result for the detection of the saddles. Even though,
the ridges are detected correctly at the first and last time step, the surfaces are
deflected so strongly that they do not intersect at all for the translation and
almost everywhere for the rotation, Figure 1.

Fig. 5: Quad gyre: separatrices (pink:
fw, blue: bw) of strongest saddle
(white) in spacetime.

Fig. 6: Petri-dish: the rotating sink
(blue) and pathlines for comparison in
spacetime.

Figure 5 shows the extraction of the strongest saddle and the separatrices of
the quad gyre, which extends the double gyre [49] to the domain [0, 1]2. We used
the resolution 2012 and one full period in time. Here, the global maximum of our
measure (24) coincides with the intersection of forward and backward FTLE of
the adjacent intervals [45]. The double gyre is an incompressible flow, which is
why it does not have sources and sinks.

Figures 6 and 7 show results of the categorization for two flow simulations
using red for sources, blue for sinks, white for saddles, and black for neither. The
rotating sink in the last 40 timesteps of the petri-dish dataset [6, 59, 5] is nicely
extracted but the complicated topology in the viscous fingers dataset [34] from
the SciVis contest http://sciviscontest.ieeevis.org is harder to interpret.
A limit of our method is reached if the data shows strong contraction and spans
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(a) Full time [0, 120]. (b) POI [65, 75]. (c) Bw POI [65, 75]. (d) Fw POI [65, 75].

Fig. 7: Categoization in viscous fingers dataset for timestep t = 70.

a long period of time. Once all particles in the flowmap are accumulated in one
point, nothing is left for it to capture in coming time steps, which leads to detail
getting lost and most points not belonging in either category 7a. We show the
strength of each region by overlaying (24), ranging from black for low strength
to transparent for high strength. This issue is a known problem of Lagrangian
methods and can be overcome by guaranteeing Lagrangian invariance for a time
period of interest (POI) only [14]. Figure 7 top shows the difference of the global
[t0, t1] = [0, 120] and the POI [65, 75] approach for time step 70. Figure 7 bottom
shows the partial POI categories considering only backward and only forward
information, which together form Figure 7b. The comparison shows that the
chosen time interval influences how a point is categorized.

6 Discussion

The extension of vector field topology to time-dependent flows has been exten-
sively studied not only in the scientific visualization community. Our results are
based on many approaches that have been published previously.

The closest related work w.r.t. saddle is [4]. The definition of finite-time
saddle is identical to ours, but sources and sinks were not treated. There, the
connection of the saddle part to Lagrangian coherent structures based on FTLE
is treated. Sadlo and Weiskopf [45] suggested to intersect forward and backward
FTLE ridges, which corresponds to half of the constraints in Definition 3. Ap-
proaches of this kind, where different time intervals are combined, were criticized
by Haller [22], because they are not Lagrangian w.r.t. the total time interval.
But as we have seen, the Lagrangian equivalent in Definition 1 is infeasible in
practice. Definition 3 bridges the gap between the Lagrangian approach and the
FTLE intersection of adjacent intervals [45] providing a categorization that is
both Lagrangian and robust.

The closest work w.r.t. sinks is probably by Wiebel et al. [59]. They used
the density maximum of particles that were seeded equidistantly in space and
repeatedly over time. Up to the exact evaluation of the density maxima, our sink
definition is in accordance with theirs because dense particle positions correspond
to contracting flowmap behavior. The main difference is that we consider a
concrete finite-time interval [t0, t1], while they seed repeatedly in time. Their
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method can be interpreted as averaging the results of ours over the intervals
[ti, t1] with , i ∈ [t0, t1]. They do not consider saddles in their work.

Probably the closest related work overall is by Theisel et al. [53]. In their
pathline-based approach, they also categorize pathlines into attractors, repel-
lors, and saddle-like trajectories based on whether their surrounding pathlines
converge toward it in forward integration, in backward integration, or both.
There are three main differences to our work. First, their approach is local in
time. They use the instantaneous orientation of the pathlines in spacetime, which
means it cannot encompass the finite-term behavior of the flow. Second for the
actual computation, they categorize a point using the Jacobian of the vector field
that results from projection of these directions on the plane through spacetime
that is orthogonal to the pathline through it. This approach is not objective.
Finally, there is no notion of strength or the extraction of representatives, or
separatrices.

Our notion of separatrices uses generalized streaklines [61] seeded on the
saddles, which is identical to related work on hyperbolic trajectories, saddle core
lines, and bifurcation lines [45, 54, 37].

7 Conclusion

We have presented an intuitive Lagrangian extension of the classic 2D vector
field critical points saddle, source, and sink to finite-time in Definition 1. It is
objective and reflects particle movement in a physically meaningful way. Since
it is not robust in practice, we also provide a sufficient criterion in Definition 3
and a first-order approximation for the computation of the category and the
strength. We show its independence on changes of the reference frame and point
out its relations to existing approaches in the literature.

Looking at the discussion, we do not necessarily consider Definitions 1 and 3
a huge leap over existing methods. We consider the main contribution of this
paper to be how this theoretical framework encompasses saddles, sources, sinks,
and separatrices and therefore ties together multiple valuable approaches from
the literature.

Limitations are that our method is not able to detect all classic critical points,
e.g., in linear steady fields because there, the Cauchy Green strain tensor is con-
stant. In addition, just like FTLE, it may detect shear as saddles and may require
a high resolution and long computation times for the generation of the flowmap.
Furthermore, it loses its ability to capture details in long simulation runs with
strong contraction when all particles gather in one point. The categorization is
always tied to a given time interval. The same point in space and time could be
classified differently for different intervals. In the future, we will analyze strate-
gies to choose meaningful time intervals. Finally, the categorization is undefined
at the boundary where particles leave the domain and at the boundary times t0
and t1. Analysis of how the method extends to 3D flow will be future work.
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