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ABSTRACT
The study of many extreme weather events requires simulations
with high spatiotemporal data that can grow in size quickly. Stor-
ing all the raw data from such a large-scale simulation for tradi-
tional post hoc analyses is soon going to be prohibitive as the data
generation speed is outpacing the data storage capability in su-
percomputers. In situ analysis has emerged as a solution to this
problem; data is analyzed when it is being produced, bypassing
the slower disk input/output (I/O). In this work, we develop a new
in situ analysis pathway for Energy Exascale Earth System Model
(E3SM) and propose an algorithm for analyzing the impacts of
sudden stratospheric warmings (SSWs), which can cause extreme
cold temperature outbreaks at the surface, resulting in hazardous
weather and disrupting many socioeconomic sectors. We detect
SSWs and model the surface temperature data distributions in situ
and show that post hoc analysis using the distribution models can
predict the impact of SSWs in the continental United States.

CCS CONCEPTS
•Mathematics of computing→ Probabilistic inference prob-
lems; Distribution functions; • Human-centered computing
→ Visualization application domains; • Computing method-
ologies→ Distributed algorithms.
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In situ analysis, generalized extreme value distribution modeling,
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1 INTRODUCTION
With recent increases in computing capabilities, climate scientists
can now study the dynamics of various physical phenomena using
high-resolution computational models. But the data generated by
such simulations is becoming prohibitively large, and due to slow
disk I/O, it will not be viable to store all the data for post hoc analysis.
To address this issue, climate scientists must move toward in situ
analysis strategies in which data is analyzed in real-time while it is
being produced in supercomputers, minimizing expensive disk I/O.

Many phenomena important to climate predictions occur at tem-
poral frequencies that challenge our current data storage and access
capabilities. Sudden Stratospheric Warmings (SSWs) [10, 21] are
one example of such a process. SSWs are of critical interest for
energy security as these events lead to extremely cold air outbreaks
over the United States (referred to as “polar vortex events” in the
media). Accurate diagnosis of SSWs requires access to the three-
dimensional atmospheric variables at a high temporal frequency so
that (1) SSWs can be detected precisely and (2) the impact of SSWs
on surface temperature (TS) variations can be modeled robustly.
Since it is unknown when an SSW will occur, we would need to
run high-resolution climate models for a long duration, simulating
hundreds of years and storing vast amounts of climate data for a
post hoc analysis. As we move toward the era of exascale comput-
ing [15], this post hoc pipeline will not scale due to the bottleneck
stemming from slow disk I/O and extreme data sizes. To enable
the scientists to perform in situ climate analysis, we demonstrate a
novel in situ analysis pathway for the atmosphere model (EAM) of
the US DOE’s Energy Exascale Earth System Model (E3SM) [14, 18].
Our in situ infrastructure allows users to write their analysis rou-
tines in high-level, high-performance Julia language minimizing
their programming effort. Using our in situ pathway, we study SSWs
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and analyze their impact on TS variations over the continental USA
(CONUS). We propose an in situ analysis pipeline that detects SSWs
using EAM data and produces generalized extreme value (GEV)
distribution models of daily minimum TS values for both non-SSW
and post-SSW cases. Our algorithm runs with E3SM and outputs
the TS GEV model parameters, which use only a fraction of the raw
data storage and can be analyzed post hoc for exploratory analysis.
Therefore, our contributions are twofold:

(1) We develop a novel in situ analysis pathway for the atmo-
sphere model (EAM) of E3SM which allows in situ execution
of climate analysis scripts written in the high-level Julia
language, reducing users’ programming efforts significantly.

(2) We propose a new in situ algorithm to study the impact
of SSW on surface temperature (TS) variations by model-
ing the TS values for non-SSW and post-SSW cases using
probabilistic GEV models.

2 RELATEDWORKS
Due to the ever-increasing gap between computing capabilities and
I/O speeds of the supercomputers, in situ data analysis has gained
significant attention over the past decade [5]. This has led to the
emergence of several in situ frameworks, such as Ascent [22], Par-
aView Catalyst [17], SENSEI [28], ADIOS [27], and VisIt libSIM [31].
An image-based approach for in situ data reduction, called Cinema,
was proposed by Ahrens et al. in [1]. Besides directly visualizing
the data in situ, many in situ data analysis algorithms have also
been proposed. One of the primary focuses of such algorithms is
to achieve data reduction using methods such as compression [24–
26], univariate sampling [7, 8, 30, 32], or information-theory based
multivariate sampling [12]. To obtain a comprehensive overview
of existing in situ infrastructures and formalized terminologies
developed by the in situ research community, please refer to [5, 11].

Various statistical distribution-based data modeling schemes
have also been used for performing in situ data modeling and anal-
ysis. In situ distribution-based data modeling has been explored
recently as a means for data reduction that preserves the statisti-
cal features of the data [13, 33]. In situ copula-based distribution
modeling and analysis of multivariate data has been proposed by
Hazarika et al. [19]. In this work, we model the surface temperature
values using GEV distribution models so that extreme behavior
of surface temperatures can be captured accurately [20, 29]. We
use SSW as an in situ trigger event to decide which GEV model
(non-SSW or post-SSW) will be updated. This is similar in spirit to
the in situ triggers proposed by Larsen et al. in their work [23].

3 IN SITU CLIMATE ANALYSIS
First, we briefly discuss SSW and GEV distributions before pre-
senting our in situ algorithm for inferring the impact of SSWs on
surface temperature variations. SSWs happen during the winter
months (November through March) and are relatively rare; they oc-
cur, on average, about once every two winter seasons in the Arctic
region [4]. Hence, the SSW detection algorithm will need to run for
multiple years to achieve a sufficient sample size. In this work, the
non-SSW and post-SSW GEV models are incrementally updated
in situ over time, depending on whether an SSW was detected.
Finally, the fitted GEV models for non-SSW and post-SSW cases

Figure 1: A scatter plot showing the data points required to
estimate SSW. The black points (highlighted by dark blue
box) located at 60◦N and 10 hPa, satisfy the SSW definition
and are used to compute SSW.

are compared post hoc for understanding the influence of SSW on
surface temperature.

3.1 Sudden Stratospheric Warming (SSW)
As SSW is considered as one of the clear manifestations of the
stratosphere-troposphere dynamic coupling, it is of interest to many
climate scientists. It has been found that almost 46% of SSWs cause
the splitting of the polar vortex [4, 10], and, in other cases, the
polar vortex can shift, resulting in extreme cold temperatures at the
surface. While several definitions of SSW exist in the literature, we
have used the definition of SSW proposed by Andrews et al. [2] as
a major midwinter warming that occurs when the daily zonal mean
zonal winds at 60◦N and 10 hPa (hectopascals) become easterly for
at least 10 consecutive days between November and March [10]. In
Figure 1, we show a scatter plot from EAM simulation data, colored
by surface temperature, where the black points, highlighted by the
dark blue box, depict the data points located at 60◦N and 10 hPa
that will be used to estimate the daily zonal mean zonal wind values.

3.2 Generalized Extreme Value (GEV) Model
Here, we want to study the distribution of extreme low surface tem-
peratures and determine whether the distribution varies post-SSW
(compared to non-SSW). Specifically, we seek to compare the prob-
ability of observing extreme low daily temperatures (below some
threshold Te ) in general to the probability of such extremes follow-
ing an SSW event. We use the Gumbel model, which is a member of
the GEV family of probability distributions with probability density
function

p(x ; µ, β) =
1
β
exp

{
−

[
x − µ

β
+ exp

(
−
x−µ
β

)]}
. (1)

The parameter µ is the mode of the distribution while the param-
eter β relates to the heavy-tailed behavior of the distribution. To
estimate the posterior distribution of the model parameters, we
use streaming variational inference to obtain a variational poste-
rior approximation denoted q(µ, β) [9]. We chose this algorithm
because it gives an estimate of uncertainty in the parameters and it
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Algorithm 1: In situ algorithm for SSW-guided GEV mod-
eling for analysis of extremes in surface temperature.
Input: N = No. of days from the current day that will be skipped
before post-SSW GEV modeling starts when an SSW is detected.

Input:M = No. of consecutive days post-SSW GEV modeling is
done.

Output: Fitted GEV models for both post-SSW and non-SSW cases.
for each time_step do

Keep track of daily minimum TS values for GEV modeling.
Counter C: Keeps track of consecutive negative daily zonal
mean zonal wind values.

if (current_time_step == end_of_day) then
Compute the global zonal mean zonal wind with
MPI:Reduction.

if (SSW) then
Update post-SSW GEV model using TS values with N
days of forward time lag and continue GEV modeling
for M consecutive days at each MPI process.

Reset: C← 0
else

Update non-SSW GEV model using TS values at each
MPI process.

else
continue

applies to the in situ setting; it ingests one data point at a time to se-
quentially update q using variational inference (a computationally
efficient approximation to full Bayesian inference). After estimating
q using a stream of data, our post hoc analysis consists of predict-
ing, as a summary of extreme cold temperatures, the probability of
minimum daily temperatures below some extreme value threshold
Te (integrated over q via Monte Carlo integration). In addition, as
an uncertainty metric, we compute the standard deviation of the
estimated probabilities across samples from q.

3.3 SSW-guided In Situ Surface Temperature
Modeling via GEV Distributions

The pseudo-code of our in situ analysis pipeline is shown in Algo-
rithm 1. During the E3SM simulation, we access the EAM data at
each time step and perform SSW-guided GEV modeling of surface
temperature data. At each time step, we keep track of the daily
minimum surface temperature (TS) values for each data point in
CONUS and maintain a global variable that counts the number of
consecutive days negative daily zonal mean zonal wind is detected
between November and March. When a simulation time step marks
the end of a day, we first compute the zonal mean zonal wind at
each MPI process using the zonal velocity (U-velocity) variable of
EAM. Since EAM mesh does not place data points exactly at 60◦N
and 10 hPa, we first filter out two layers of data points, which are
above and below the 10 hPA level and fall within [59◦N - 61◦N] at
each MPI rank. Then we linearly interpolate the zonal wind values
to obtain values at 60◦N and 10 hPa at each MPI rank. Finally, using
an MPI reduction operation, we estimate the global zonal mean
zonal wind value. If the value is negative, we increase the counter C
by one. When the value of C becomes 10, i.e., the zonal mean zonal
wind value is negative for 10 consecutive days, the parameters
for the post-SSW GEV models for each spatial location in CONUS

Figure 2: The Y-axis shows the daily zonal mean zonal wind
values at 60◦N, 10hPA and X-axis shows the day of the year.
The plot indicates SSW detected for simulated year 2098 as
highlighted by the red circle where the value of zonal mean
zonal wind is negative for more than consecutive 10 days.

are updated. This update is not done immediately when SSW is
detected since the impact of SSW on surface temperature is gener-
ally seen after a time lag. Therefore, we compute the day indices
in which the post-SSW GEV models will be updated by adding N
days forward time lag, and the post-SSW GEV model parameters
are updated using data from M consecutive days. N and M in our
pipeline are input parameters and scientists can use different time
lags for testing their hypotheses. For all the other time steps, when
SSW is not detected, we update a different set of GEV models per
spatial location in CONUS using TS values which represent the
non-SSW TS distributions. These GEV models, summarized by the
approximate posterior distributions of their parameters, are stored
on the disk for post hoc analysis and visualization.

4 ANALYSIS RESULTS
As a first step toward in situ analysis of various climate phenom-
ena, we have conducted a long-term, climate-relevant simulation
to generate sufficient data to develop and validate our analysis al-
gorithms. To this end, we have run one realization of the Shared
Socioeconomic Pathway (SSP) 585 scenario [16] with E3SM. This is
an aggressive scenario that assumes the climate will experience an
increase in radiative forcing of 8.5W/m2. This scenario is designed
to provoke a strong model response and limit the influence of inter-
nal model variability. We use the standard E3SM V1 configuration
with a 1◦ atmosphere and land (equivalent to 110 km at the equa-
tor), 0.5◦ river model (55 km), and an ocean and sea ice with mesh
spacing varying between 60 km in the midlatitudes and 30 km at
the equator and poles [18]. We started the simulation in year 2015
and simulated for 85 years in the future up to year 2100.

We ran the SSW detection algorithm for this offline data and
found several simulated years when SSW was detected. We also
found that the frequency of SSWs increased toward the later years,
as was expected by the climate scientists. In Figure 2, we show a
representative SSW plot for the year 2098 when an SSW event was
detected. The Y-axis shows the zonal mean zonal wind at 60◦N,
10 hPA. We observe a set of consecutive days (highlighted by the
red circle) when the value of zonal mean zonal wind is negative,
indicating the reversal of zonal mean winds and is identified as an
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Figure 3: A) Predicted probabilities of observing extreme low temperatures in the CONUS (less than 10◦K below seasonalmean)
in the non-SSW (left) and post-SSW (right) settings, indicating higher probabilities of extreme cold temperatures following an
SSW event. B) Uncertainty in the predicted probabilities (represented by the standard deviation, or SD, across samples from
the parameter posteriors). The uncertainty is higher for post-SSW events because SSW events are rarer.

SSW event. We can also see that there is another such time window
when the zonal mean wind values are negative; however, since it
does not happen between November and March, it does not qualify
as a valid SSW event.

Next, we demonstrate the GEV modeling results using data from
four simulated years in which SSW events were detected (specif-
ically, 2083, 2085, 2095, and 2098). While the models were fit in a
streaming fashion, we used an offline estimate of the mean tempera-
ture (computed over 30 simulated years of data) at each location and
day of the year to first detrend the surface temperatures. Figure 3.A
shows spatial maps of the estimated probability of observing ex-
treme cold temperatures (defined as more than 10◦K below the
average daily temperature) for the non-SSW (left) and post-SSW
(right) regimes. It appears that the probability of extreme low tem-
peratures is higher acrossmost of the CONUS following SSW events.
However, it is worth noting that because SSW events are fairly rare,
the non-SSW models were fit using more observations than the
post-SSW models. As shown in Figure 3.B, the uncertainty in the
predicted probability of extreme events (represented using the stan-
dard deviation across Monte Carlo samples from the approximate
posterior distributions of the parameters) is higher for the post-
SSW model compared to the non-SSW model. While these results
are preliminary, they demonstrate the capability for flexible in situ
statistical modeling to answer scientific questions.

5 IN SITU STUDY
Our in situ integration enables the SSW-guided GEV modeling of
temperature data generated by EAM following the streaming analy-
sis shown in Algorithm 1. The E3SM code is developed in FORTRAN
and EAM is the atmosphere module of E3SM that we have used. A
schematic diagram of our in situ integration with EAM is shown in
Figure 4. We aim to enable a Julia-based runtime environment for
executing in situ analysis scripts using data generated from EAM.
To the best of our knowledge, none of the existing in situ frame-
works allow executing a Julia script in situ and so, in this work, we
have developed a new in situ analysis pathway for EAM. Our in
situ interface is lightweight and does not require recompilation of
E3SM if the users want to change their analysis script. To access
the EAM variables in situ, we have developed a FORTRAN-based
in situ adapter that accesses the EAM data structures and reads
the necessary variable arrays. Since Julia runtime currently only

Figure 4: A schematic diagram of the in situ interface devel-
oped to integrate EAM with Julia run time environment.

supports C language embedding, we pass the data pointer first to
an intermediate C-interface from FORTRAN, which then calls the
Julia interface subroutine and passes the data pointer from C to the
Julia runtime environment as shown in Figure 4. We invoke our
FORTRAN in situ adapter from the Control module of EAM where
the final version of the simulation data becomes available at each
time step. Furthermore, since various climate analysis algorithms
require accessing EAM data at different time frequencies, our in
situ interface also provides access to E3SM’s internal clock vari-
ables so that the users can call their in situ routines at the desired
time-frequency. Note that the data from FORTRAN to C-interface
undergo a one-time deep copy and then we pass the pointer from
C-interface to the Julia environment.

5.1 In Situ Code Integration
Our in situ adapter also passes the E3SM MPI communicator to the
Julia environment so that the algorithm developers can write their
analysis routines using the same MPI communicator. The EAM
data appears as Julia array objects in the Julia runtime environ-
ment and the users can write Julia routines using these objects
directly. The motivation for using the Julia language comes from
the fact that Julia offers the advantages of Python-like dynamic
typed languages and has higher performance than other dynamic
typed languages [6] and can be executed in GPU efficiently. Further-
more, the Julia modules can also be changed dynamically without
recompilation of E3SM code due to Julia’s JIT [3] feature. Even
though, in this work, we only demonstrate the SSW-based analyses,
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our Julia-based in situ interface can be conveniently used for per-
forming other in situ climate analyses simply by swapping the Julia
script during runtime. Currently, our in situ adapter works only
for the E3SM atmosphere model, but it can be easily extended for
performing in situ analysis for other E3SM modules. In that case,
we will have to modify our FORTRAN adapter to access data from
other E3SM modules such as MPAS-O. Also, note that this in situ
integration follows the direct integration strategy (i.e., the simula-
tion and in situ analysis code use same computing resources), and
once the in situ analysis is finished at each time step, the control
goes back to E3SM and the simulation continues.

5.2 In Situ Results and Performance Evaluation
We ran our in situ algorithmwith E3SM tomeasure the performance.
The test case we used is the same configuration that was used to
generate data discussed in Section 4. The in situ study was done on
an HPC system, Grizzly, located at Los Alamos National Laboratory,
consisting of 1490 computing nodes. Each node has 36 processor
cores: 2× [E52695v4 (i.e. Broadwell), 2.1GHz, 18 cores, 45MB cache],
128GB memory, and Intel OmniPath OP HFI, Single-port, PCIe-
gen3x16 network interconnect.

As this E3SM case is optimized to run on 84 compute nodes
(3024 cores), we also used 84 nodes, running E3SM for a duration
of 3 simulated months. In Figure 5 (top) we show the SSW plot
for the three-month in situ run. We observe that there is a small
time window (marked by the red dotted circle) when the zonal
mean zonal wind values are negative; however, since the number of
such consecutive days is less than 10, it did not qualify for an SSW
event. To validate the GEV modeling, we used the posterior mean
in situ GEV parameters to analytically calculate the distributional
mean, which represents the expected daily minimum temperature
at each spatial point; the bottom image of Figure 5 shows this
daily expected minimum temperature plot. The expected minimum
temperatures exhibit spatial structure consistent with geography
(including lowerminimum temperatures in the North and the Rocky
Mountain region, compared to other locations at similar latitudes).

We also found that the in situ processing time of our code at each
time step is consistent and it takes on average 44.30 secs to simulate
data for one day, whereas, if no in situ processing is done, then
the atmosphere module (EAM) takes 40.046 seconds for simulating
a day. Therefore our in situ processing is adding an overhead of
10.62%. Climate scientists in our team have acknowledged that this
new Julia-based in situ analysis infrastructure for E3SM will be a
valuable addition to their workflow and strongly encouraged us to
continue the development and maintenance of this infrastructure
for enabling in situ climate analysis using E3SM at scale. In the
future, we plan to optimize our GEV estimation routine so that the
in situ overhead comes down further to make our implementation
more efficient.

6 CONCLUSION
We have presented a new in situ pathway for the E3SM atmosphere
model which allows users to write their analysis scripts in Julia
language. We believe that our in situ interface can reduce the pro-
gramming efforts significantly for users without compromising

Figure 5: Top: SSW plot for the months of JAN-MAR gener-
ated from the in situ run and no SSW was detected. Bottom:
Based onfittedGEVmodels from the in situ run, we show ex-
pected daily minimum temperatures in degrees Kelvin (K).

the in situ performance. We also propose a statistical in situ anal-
ysis algorithm to study the impact of SSW and deploy it in situ
to demonstrate the efficacy of our method. In the future, we plan
on improving our in situ infrastructure and applying it to evaluate
SSW-based analysis algorithms using various E3SM cases. We also
intend to study other climate phenomena such as Madden-Julian
Oscillation (MJO) in situ using high-resolution EAM data to de-
rive enhanced understanding about such events, develop in situ
inference capabilities, and study their impacts on human lives.
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