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Abstract With exascale supercomputers on the horizon, data-driven in situ data re-
duction is a very important topic that potentially enables post hoc data visualization,
reconstruction, and exploration with the goal of minimal information loss. Sophis-
ticated sampling methods provide a fast approximation to the data that can be used
as a preview to the simulation output without the need for full data reconstruction.
More detailed analysis can then be performed by reconstructing the sampled data set
as necessary. Other data reduction methods such as compression techniques can still
be used with the sampled outputs to achieve further data reduction. Sampling can be
achieved in the spatial domain (which data locations are to be stored?) and/or tem-
poral domain (which time steps to be stored?). Given a spatial location, data-driven
sampling approaches take into account its local properties (such as scalar value, local
smoothness etc.) and multivariate association among scalar values to determine the
importance of a location. For temporal sampling, changes in the local and global
properties across time steps are taken into account as importance criteria. In this
chapter, spatial sampling approaches are discussed for univariate and multivariate
data sets and their use for effective in situ data reduction is demontrated.
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1 Introduction

Conceptually, sampling can be loosely defined as the selection of a subset from a
collection. In the context of a large scale simulation code, sampling to decrease the
output data size is reasonably common. Choosing a regular data output scheme of
writing every nth time step is a ubiquitous approach to sampling. As mentioned in
the motivating chapter of this book, when very large-scale scientific simulations are
running on increasingly powerful supercomputers, one can only store a very small
fraction of the generated data. Data movement and I/O restrictions will require more
time between data dumps and naive time step selection as a data reduction technique
risks losing important events that may occur between regularly scheduled output
dumps.

Sampling techniques select < objects from the original pool of " elements with
< ≤ " for an effective data reduction method. For data reduction and sampling for
exascale codes, machine compute capability is orders of magnitude higher than I/O
rates, and this translates to < << " , i.e., < is orders of magnitude smaller than " .
Thus, for in situ large-scale data reduction purposes, simple sampling approaches are
no longer sufficient to address the data reduction needs. Adaptive and data-driven
sampling techniques become necessary to ensure that the data saved to disk has
the relevant statistical properties of the original data and that the information saved
prioritizes rare and/or important features and events in the data.

Sampling for data reduction is an attractive approach for in situ data reduction for
various reasons. Sampling allows the users to select a representative subset of the
raw data points where the true location and the data values for the sampled points are
preserved. Downsampled data statistically represents the original data, preserving
features and relationships in the data. Use of samples in the post hoc exploration
phase does not always require expensive data reconstruction as the reduced data set
can be visualized/queried to get an overview of the data.

With these benefits in mind, sampling becomes an attractive in situ solution. Sim-
ilar to the other in situ data reduction methods discussed in this section of the book,
the main goal of sampling is preservation of important data properties or features
given the limited I/O bandwidth and storage capabilities. In this chapter, scalar and
multivariate data sets are addressed. The concept of importance is introduced with a
discussion of how to define it in an automated data-driven approach to demonstrate
how sampling can be a useful tool for preserving the important regions. Section 2
briefly discusses the foundations related to in situ sampling and visualization. Sec-
tion 3 describes different scalar sampling methods for scientific data sets. Section 4
focuses on the sampling methods for multivariate data sets. In situ performance is
discussed in Section 5, with limitations of the sampling methods covered in Section
6. Future directions for in situ data-driven sampling in included in Section 7.
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2 Prior Work

The development and deployment of novel sampling methods for in situ data reduc-
tion and feature preservation is built uponwork acrossmultiple disciplines. A flexible
many-core capable infrastructure is critical for modern HPC simulation codes to ac-
cess in situ analysis such as sampling. Bauer et al. [9] provide an overview of in situ
infrastructures available to simulation codes for deployment of analysis routines. As
HPC heads towards exascale, there are several commonly used infrastructures for
scientific applications that can be leveraged to enable in situ sampling. These include
ParaView/Catalyst [1, 6], VisIt/LibSim [14], Ascent [30], SENSEI [7], and ADIOS
[35].

Each of these in situ APIs provides the visualization and analysis support neces-
sary for in situ sampling use cases and details about many of these infrastructures
can be found elsewhere within this book.

Sampling is one of many possible data reduction techniques available to address
concurrency challenges at exascale. Son et al. provide a survey of data compression
techniques [41] for exascale computing. Lossless compressors such as BLOSC [5]
and fpzip [33] are attractive to avoid introducing biases into the data. However,
lossless compression typically does not provide sufficient data reduction to fully
solve I/O bandwidth and storage issues. Modern compressors usually allow both
lossless and lossy modes, allowing the user to set parameters such as error bounding.
Transform methods, such as zfp [32], speck [27] or wavelet approaches such as Li
et al. [31], model the data, retaining the most important coefficients in the modelling
scheme. Compressors based on predictive algorithms include SZ [19, 45] and fpzip.

Another common data reduction technique is to move data analysis, visualization,
or feature detection in situ, writing out reduced data extracts rather than full raw data
sets. Image-based data abstracts have been shown to provide post hoc data analysis
flexibility [2, 46] (see, for example, the chapter on Cinema in this book). Reduction
through statistical summarization is another approach [25, 48, 52].

Sampling as a data reduction technique is more similar to non-compression data
reduction approaches. That said, sampling techniques can often be used in combi-
nation with compression to achieve higher levels of overall data reduction.

Information theory [16, 40, 47] forms a theoretical foundation used across many
aspects of analysis and visualization of large scientific data sets (see for example
[13]). Drawing from information theory, Nouanesengsy et al. [37] developed ADR,
Analysis-Driven Refinement, in which user-defined importance metrics are used
to select a sparse data set for fast post hoc analysis and visualization. Entropy
maximization was used by Biswas et al. ([11]) in the development of an adaptive in
situ samplingmethodology that prioritized rare but important events in the data.Dutta
et al. ([20]) developed a multivariate approach for statistical data summarization and
downsampling based on pointwise information theoretic measures.

Woodring et al. [51] introduced and demonstrated a stratified random sampling
scheme in a cosmology code. Sampling based on bitmap indexing was first used by
Su et al. [43]. Wei et al. [50] proposed IGStS, information guided stratified sam-
pling, to downsample data sets while preserving important regions in the data. Park
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et al. ([38]) advocated for a visualization aware sampling approach that minimized a
loss function based on visualization goals. Sampling in the context of visualization
also led Battle et al. ([8]) to develop ScalaR which performs data reduction on the
fly for database queries returning results too large for effective interactive visual-
ization. Likewise, with sampleAction, Fisher et al. ([22]) focused on improving the
visualization experience by visualizing incremental results.

As described in this chapter, the data-driven sampling techniques draw heavily
on importance metrics to develop sampling algorithms that prioritize the data of
interest to the domain scientist. Readers who may need approaches in addition to or
instead of sampling should also consider exploring the other data reduction chapters
included in this book.

3 Sampling using Scalar Data Importance

3.1 Motivation for Generic Scalar Sampling

Scalar fields are commonly found across scientific domains and simulations. In
the simplest case, a 2D or 3D spatial domain is discretized into smaller regular
sized regions and a scalar quantity e.g., temperature T, is computed at each discrete
location. Although irregular shaped regions are also possible, in this chapter will
focus on the regular grid scenario. After the scalar field temperature is produced
by the simulation, domain scientists use that data to understand the features and
phenomenon of interest, e.g., temperature can be used to explore and map the
critical global currents that drive global warming and climate change.

A common workflow is for the domain scientist to analyze the features of interest
in the data and develop data reduction methods that are specific to the scalar field
and features of interest. When the scientist needs to perform a similar feature-driven
analysis of a different variable, for example, pressure P, the analysis workflow may
need to incorporate a different algorithm tuned to this new variable of interest. From
the perspective of optimizing the time and effort of the domain scientist, this can be
an inefficient workflow.

An alternative approach is to use more generic scalar field sampling methods.
This approach is particularly useful in the in situ scenario as the same algorithm can
potentially be used across multiple scalar fields during a run, significantly reducing
overall I/O and storage needs. An overview of two generic scalar field sampling
approaches is first presented before moving on to more sophisticated data-driven
sampling methods.
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Fig. 1 Schematic example showing random sampling for regular grid data. a) original data b) after
randomly selecting 25 out of 81 data points.

3.2 Methods for Scalar Field Sampling

3.2.1 Random Sampling

Random sampling methods are popular due to their simplicity and have been heavily
used for various sampling purposes. In a simple random sampling method, each data
value has equal probability of being selected. For stratified random sampling, the
data is first divided into strata (groups) and then random sampling is applied from
within each strata. A schematic example of random sampling can be seen in Figure 1.

Neither simple nor stratified random sampling take into account domain science
knowledge or scientific goals. Likewise, neither methods assigns priority to any
specific data values that might be of particular importance to the scientist. Hence,
although these methods preserve the overall data distribution, important features
of the data are not explicitly retained and some or all of these features may be
unintentionally lost in the sampling process.

For a regular grid data set, random sampling will produce a particle data set
as a result of the sampling. If #A0=3 samples are to be generated, then 4-tuples
{G, H, I, E0;} for each location will need to be stored where G, H, I represent the
locations of the particles and E is some variable specific to the simulation. This
amounts to 4# storage.

3.2.2 Regular Sampling

Another well known and commonly used sampling method is naive regular sam-
pling. This method sub-samples the data by regularly selecting data points using a
predefined interval. A schematic example is shown in Figure 2. Similar to the random
sampling, this method also preserves the overall data distribution and yields similar
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Fig. 2 Schematic example showing regular sampling for regular grid data. a) original data b) after
regular selection of 25 out of 81 data points.

statistics as the original data. However, again, there is no notion of feature preser-
vation in the data generated by the sub-sampling scheme. After sampling, regular
sampling keeps the regular grid structure. Thus the sampled data output is still on a
regular grid and requires #A46 storage when #A46 samples are to be stored as only
the values are stored at each grid point.

3.2.3 Sophisticated Data-driven Sampling Approach

Sampling approaches that are based on randomand regular selection have a limitation
when used for scientific data analysis and reduction. Although the samples generated
from such methods provide a good approximation to the original data distribution,
all the data points are given equal importance when making the selection. This is
not always the ideal way to choose a subset of values when dealing with data from
scientific simulations. Generally, such simulations contain features of interest that
are more important to the domain experts compared to the other parts of the data.
Another key point is that these features are potentially much less probable in the data
when compared to the chance of occurrence for non-feature regions. Based on these
ideas, an in situ algorithm can be devised that can still be generic (i.e., applicable
to a diverse set of simulations and scalar fields), but that prioritizes the important
feature regions of the data while sampling.

Information theory provides methods applicable to developing data-driven sam-
pling approaches that preferentially save data of interest to the domain scientist.
Using the guiding principle that rare values in a data set are more likely to be a
feature and the more abundant data values are likely to be background or non-feature
regions, a data-driven sampling method can be formulated by assigning more impor-
tance to a data value that has lower probability of occurrence, and assigning lower
importance to the samples that are more abundant. This simple procedure will likely
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retain the important regions of the data. There are many different ways this can be
implemented.

Rather than introducing different user-defined parameters to the system for in
situ use, the concept of Shannon’s Entropy from information theory can be used
to formulate a fast and effective algorithm. Shannon’s entropy, �, provides the
total information content [17] of a random variable - . This is given as: � (-) =
−∑G∈- %(G) log2 %(G), where %(G) is the probability of G, where G ∈ - . Now the
principle of maximum entropy can be used for creating generic sampling methods.

The principle of maximum entropy states that the maximum entropy state of a
randomvariable is the best representationwhen no other information is available [29].
Using this for a generic sampling method without knowing the features of the data,
the best samples would be the ones that maximize the output entropy. Since a
uniform distribution has maximum entropy, the goal of maximum entropy sampling
will be to try to select equal number of samples for each scalar value irrespective
of its abundance in the data set. Ideally, if selecting � samples for all the scalars,
then the scalars that have higher occurrence in the data will automatically get a
lower probability of acceptance. Similarly, the rare values will have higher chance
of selection.

Figure 3 illustrates this concept. From a Gaussian distribution with the mean,
` = 0.0, and the variance, f2 = 0.01, 2000 random data points are taken. The data
histogram is shown in Figure 3(a). Computing entropy for this data set using 24
bins results in 3.9 bits. Selecting 20% samples from this data using the entropy-
maximizing sampling method as discussed before, results in a histogram similar
to Figure 3(b) with an entropy of 4.45 bits. This method of sampling maximizes
the entropy from these samples. An acceptance histogram can now be defined as a
histogram that plots the data values along the x-axis while the y-axis denotes the
probability of getting selected for that scalar. This can be seen in Figure 3(c). From
this figure, it is easy to observe that the values with higher frequency in the original
data were given lower importance and vice versa. An algorithmic representation is
given in Algorithm 1.

An application of this data-driven intelligent sampling method to the Hurricane
Isabel data set [49] is shown in Figure 4. For this data set, the feature of interest is the
hurricane eye as shown in Figure 4(a). For demonstration purposes, the Pressure field
from time step 25 is chosen. The effect of applying the three different scalar sampling
methods (random, regular, and data-driven entropy-maximizing sampling) on this
data can be seen. The sampling rates used were 0.5% for random and entropy-based
data-driven intelligent sampling method (since they store the point locations) and
1.5% for regular sampling (as it does not need to store the locations). All the sampled
data outputs are reconstructed back to original size for comparison purposes. As can
be seen from Figure 4, the data-driven entropy-maximizing method (as shown in
Figure 4c)) outperforms the random (Figure 4d)) and regular (Figure 4e)) sampling
methods in retaining a more complete visual representation of the hurricane eye.
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(a) Original data histogram

(b) After entropy maximization

(c) Acceptance histogram

Fig. 3 Illustration of information-driven sampling method via entropy maximization. a) histogram
of original data points, b) histogram of the sampled data where the entropy of resulting histogram
is maximized c) Acceptance histogram showing the probability of the values of each bin getting
accepted after sampling. (This image is reprinted from our previous work [11])

3.3 Sample Analysis and Reconstruction

Often the scientists want to visualize the full-resolution data for exploring important
features interactively. Using sub-sampled data requires a technique that can recon-
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Input: Sim generated data at each time step
Output: Acceptance histogram
=: = samples to be taken from full data
# = total points from full data
nbins = number of bins
=B0<?B = =: ÷ =18=B : samples to be taken from each bin
remaining-samples = N
H = CreateHistogram(Data,nbins)
count,bin-edges = SortBinsAccordingToTheirCount(H)
while not all bins are visited do

i=0;
if count[i] < =B0<?B then

samples-taken = count[i];
else

samples-taken = =B0<?B ;
end
%8 = samples-taken ÷ count[i]
remaining-samples = remaining-samples - samples-taken
remaining-bins = nbins - i
=B0<?B = remaining-samples ÷ remaining-bins
i=i+1;

end
Use %8s as the probabilities for the corresponding bins of the acceptance histogram

Algorithm 1: Algorithm for the in situ generation of an acceptance histogram.

Fig. 4 Sampling results from Hurricane Isabel data set. a) original data b) zoomed in view of the
feature (hurricane eye) region. c) reconstruction using data-driven sampling method (sampling ratio
0.5%). d) reconstruction using random sampling method (sampling ratio 0.5%). e) reconstruction
using regular sampling method (sampling ratio 1.5%). (This image is reprinted from our previous
work [11]).

struct the full-resolution data from the sampled data points. The reconstruction of the
full-resolution data can be performed using a nearest-neighbor or linear interpolation
based technique. Nearest-neighbor interpolation is faster but generally less accurate.
Given a location where a value is to be assigned in the reconstruction phase, this
method assigns the value of the nearest sample location. Linear interpolation method
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(a) (b) (c)

Fig. 5 Volume visualization of sampling results (sampling ratio 1%) using the Nyx simulation.
a) Original data and zoomed into a feature region with a dark matter halo. b) Reconstruction
using data-driven intelligent sampling method. c) Reconstruction using stratified random sampling
method. (This image is reprinted from our previous work [11])

is more time-consuming but often more accurate. In this method, first a 3D convex
hull is created using the sampled points and then a polygonal mesh is created using
Delaunay triangulation. Then, for each grid point in the reconstruction grid, the sim-
plices in the Delaunay mesh are used and the value is linearly interpolated from the
simplex vertices that encloses the current grid point. Once the data is reconstructed
(using nearest-neighbor or linear), all analysis/visualization techniques (including
the ray casting-based volume rendering that is shown here) can be used to explore
the full-resolution data.

3.4 In situ Analysis and Quality Comparison

To demonstrate the performance of the three sampling methods, the Nyx cosmology
simulation code [4] is used. The Nyx data resolution was 512× 512× 512. The Nyx
simulation produces a regular grid data set with multiple variables. Out of these,
the baryon density is one of the most important ones to analyze since it provides
the particle concentration information tracing back to the origin of universe. In this
density field, high density regions correspond to dark matter halos forming over
time in the universe. These high density regions are therefore the most important
to the scientist. In Figure 5, visualizations of the reconstructed samples are shown
for comparison purposes at 1% sampling rate for random and data-driven method.
Figure 6 visualizes the samples coming out of the sampling methods with even lower
sampling ration: 0.5% sampling rate for random and data-driven method and 1.5%
for regular method. From both of these figures, it can be observed that the data-driven
method preserves the features of the data much better compared to the regular and
random methods.

For a quantitative comparison of the quality across these methods, Pearson’s
correlation coefficient is calculated for both the Hurricane Isabel and Nyx data
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(a) (b) (c)

Fig. 6 Point rendering results from Nyx simulation. a) using data-driven intelligent sampling
method (sampling ratio 0.5%). b) using regular sampling method (sampling ratio 1.5%). c) using
stratified random sampling method (sampling ratio 0.5%). (This image is reprinted from our
previous work [11])

Table 1 Quantitative similarity comparison of different sampling method produced images to the
image produced by the original data under same rendering configuration.

Data-driven Samp Random Samp Regular Samp
Hurricane Isabel data 0.978 0.921 0.961
Nyx cosmology data 0.987 0.865 0.881

sets. This calculation is performed using volume rendered images from the original
data and from the three sampling methods for the same camera angle and transfer
function. Then using red, blue and green as three channels, the Pearson correlation
value for each sampling method is calculated against the original data. This result
is presented in Table 1. As can be seen from this table, the data-driven intelligent
sampling method clearly outperforms the other two methods.

Thus, it can be seen that intelligent scalar sampling methods can provide high
quality and light-weight data reduction capabilities for scalar fields in large scale
data sets. The next section discusses the case where a simulation produces multiple
variables to see how information theory can motivate effective multivariate sampling
approaches.

4 Sampling using Multivariate Association

4.1 Motivation for Multivariate Sampling

Large-scale simulations commonly produce data sets containing multiple variables.
The above section described sampling techniques that work on a single variable at a
time while sub-sampling the data. However, data analysis applications may require
analysis of multiple variables together. Hence, similar to the univariate sampling
technique, multivariate data sampling techniques are also important. Multivariate
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sampling can help in reducing a set of simulation variables together. For multivariate
data sets, sub-sampled data must preserve the relationship and correlations between
variables so that when a post hoc analysis is conducted using the sub-sampled data,
the multivariate data features will be the same as an analysis done on the full data
set.

Several previous studies have shown that the relationship among multiple vari-
ables can be complicated [12, 28, 34]. To summarize such variables together, first,
one needs to identify the relationship among them. An effective way of performing
sub-sampling of multivariate data would be to sample the points with higher fidelity
from the region where the variables show strong statistical association among them.
Previous studies have shown that such statistically associated regions often con-
tain multivariate features that are of interest to the application experts for detailed
analysis. For example, in a hurricane simulation, the hurricane eye is an important
feature, which can be characterized by a spatial region with low pressure and high-
velocity values [24, 25]. Similarly, to understand the complex turbulent mixing in
a combustion simulation, the study of high valued hydroxyl regions together with
the stoichiometric mixture fraction variable reveals more information than study-
ing them individually [3]. Therefore, a multivariate data sub-sampling technique
that preserves the statistical association among variables will be able to analyze
and visualize such features with high accuracy in the post hoc analysis phase. The
following sections describe a multivariate data sampling algorithm that uses sta-
tistical data associations and multivariate distributions to sub-sample several data
variables together and demonstrates the usefulness of the technique by providing
various multivariate applications with qualitative and quantitative studies.

4.2 Multivariate Statistical Association-Driven Sampling

One of the primary requirements of a multivariate sampling technique algorithm is
to preserve the multivariate properties, i.e, the interdependence among the chosen
variables, and their correlation properties so that the sub-sampled data set can be
used effectively for multivariate feature analysis. To achieve this, the multivariate
sampling algorithm selects samples densely from the regions where the variable
combinations show a strong statistical association or co-occurrence. Higher co-
occurrence indicates a stronger association among data values. The strength of the
association is quantified for each spatial data point considering their value combi-
nation from multiple variables. After the quantification of statistical association is
done, sub-sampling is performed according to the strength of the association values
and data points which show stronger statistical association have a higher chance
of getting selected. At the end of the sampling process, an unstructured data set is
produced and this reduced data can be stored onto disk for post hoc analysis. Note
that, based on the storage budget, the application user can determine the percentage
of data points that will be stored for post hoc analysis and thus determine the amount
of data reduction that will be achieved through the sampling.
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4.2.1 Estimation of Multivariate Pointwise Information

Multivariate data sampling first requires a criterion to quantify the importance of
each data point in the multivariate sense. Each data point in the multivariate data has
a value tuple consisting of values from each variable. Consider two variables, - and
. . At each data point, there is a value pair (G, H) where G is a specific value of variable
- and H a value for . . Next, a measure is needed that can quantify the importance
of each such value pair so as to select data points that are more informative than
others in order to perform sub-sampling. Using information theory, the importance
of such value pairs can be estimated using an information-theoretic measure called
pointwise mutual information (PMI). Pointwise mutual information was first
introduced in the works of Church and Hanks [15] for the quantification of the word
association. PMI measures the strength of the statistical association of each value
pair, thus for each data point. For two random variables - and . , then the PMI value
for the value pair (G, H) can be formally defined as:

%"� (G, H) = log
?(G, H)
?(G)?(H) (1)

Here, ?(G) is the probability of a particular occurrence G of - , ?(H) is the probability
of H of variable . and, ?(G, H) is their joint probability. When ?(G, H) > ?(G)?(H),
%"� (G, H) > 0, which means G and H have higher statistical association between
them. When ?(G, H) < ?(G)?(H), then %"� (G, H) < 0. This condition indicates that
the two observations follow a complementary distribution. Finally, when ?(G, H) ≈
?(G)?(H), then %"� (G, H) ≈ 0 refers to the case where the variables are statistically
independent. It is important to note that the mutual information (MI) � (-;. ) is the
expected PMI value over all possible instances of variables - and . [18].

� (-;. ) = � (-,. ) [%"� (G, H)] (2)

Given this information-theoretic measure, if a value pair has higher PMI value,
then it is more likely that the data point associated with it will be selected in the
sub-sampled data set. Previous work has shown that regions with high PMI values
often correspond to the multivariate features in the data set [21], and hence, selecting
data points using their PMI values will also ensure the preservation of important
multivariate features in the data set.

To demonstrate the concept of PMI,first consider two variables: Pressure and
Velocity from the Hurricane Isabel data set. Figure 7 shows the volume visualization
of these two variables. To estimate the PMI values for each data point for these two
variables, one first estimates their probability distributions in the form of normalized
histograms. Then for each value pair in the 2D histogram bin, the PMI value is
estimated using Equation 1. A 2D PMI plot is shown in Figure 8a. The X-axis of
the plot shows values of Pressure and the Y-axis shows values of Velocity. Since the
computation of PMI values were done using a histogram, the axes in plot 8(a) show
the bin IDs. The corresponding scalar value for each bin ID can be easily estimated
from the range of data values for each variable. In this plot, the white regions in
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(a) Pressure field visualization. (b) Velocity field visualization.

Fig. 7 Visualization of Pressure and Velocity field of Hurricane Isabel data set. The hurricane eye
at the center of Pressure field and the high velocity region around the hurricane eye can be observed.
(This image is reprinted from our previous work [20].)

(a) PMI plot of Pressure and Veloc-
ity field.

(b) PMI volume of Pressure and Veloc-
ity field.

Fig. 8 PMI computed from Pressure and Velocity field of Hurricane Isabel data set is visualized.
Figure 8(a) shows the 2D plot of PMI values for all value pairs of Pressure and Velocity, Figure 8(b)
provides the PMI field for analyzing the PMI values in the spatial domain. It can be seen that
around the hurricane eye, the eye-wall is highlighted as high PMI-valued region which indicates a
joint feature in the data set involving Pressure and Velocity field. (This image is reprinted from our
previous work [20].)

the plot represent value pairs with zero PMI values and red regions indicate high
PMI values. It can be observed that the low Pressure and moderate to high Velocity
values have high PMI values and therefore higher statistical association. Using the
PMI values for each data point, a new scalar field can be constructed, namely the PMI
field where each data point reflects the pointwise statistical association. In Figure 8b,
the PMI field for the Pressure and Velocity variable is shown. It can be seen that
the darker brown region has higher values of PMI and is highlighting the eye-wall
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of the hurricane, an important multivariate feature in the data set. Hence, sampling
using PMI values will select more data points from the eye-wall region since the
data points there have higher PMI values and by doing so, the eye-wall feature will
be preserved with higher detail in the sub-sampled data set.

GeneralizedPointwise Information.The pointwisemutual informationmeasure
allows us to analyze two variables at a time. To estimate the PMI values for more
than two variables, a generalized information theoretic measure can be used, called
specific correlation [18]. Specific correlation can be formally defined as:

(� (G1, G2, .., G=) = ;>6
?(G1, G2, ..., G=)

?(G1)?(G2)...?(G=)
(3)

where ?(G8) represents the probability of an observation G8 for the 8Cℎ variable -8 ,
and ?(G1, G2, ..., G=) refers to the joint probability of the value tuple (G1, G2, ..., G=).
Note that, specific correlation is a generalized extension of the pointwise mutual
information and can be used to quantify association for data points when more than
two variables are used.

The pointwise information measures presented above depend on joint distribu-
tions of variables, raising the question of how these high-dimensional distributions
can be computed effectively. Joint probability distributions can be computed us-
ing various modeling approaches, such as parametric distributions, non-parametric
distributions, etc. Among parametric distribution models, Gaussian mixture model
(GMM) is well known for its compactness as only model parameters are necessary
to be stored during the calculation. However, the estimation of parameters for high-
dimensional Gaussian mixture models using an Expectation-Maximization (EM)
technique [10] can be computationally expensive. In contrast, non-parametric mod-
els such as Kernel Density Estimation (KDE), Histograms are other alternatives that
can be used to estimate joint probability distributions. The computation of high-
dimensional KDE is expensive since a significant number of kernel evaluations are
required. Furthermore, the storage increases as dimensionality increases. In con-
trast, the computation of histogram-based distributions is comparatively faster, but
the standard high-dimensional histogram representations are not storage efficient.
Note that, for a large number of variables, in general, all the above approaches suffer
from curse of dimensionality. However, sparse histogram representations reduce stor-
age footprint significantly. Recently, to address the issues of dimensionality, a new
technique for high-dimensional histogram estimation has been proposed [36]. This
technique is storage efficient and can be computed efficiently in a distributed parallel
environment. Another effective and alternative way of modeling high-dimensional
distributions is the use of statistical Copula functions [26]. A Copula-based distri-
bution representation only stores the individual independent distributions and the
correlation information among the modeled variables. From this Copula model, the
joint probability can be queried. This approach reduces the computational cost and
storage cost significantly while estimating high-dimensional distributions as shown
in [26]. It is also important to note that, in practice, multivariate features are mostly
defined using two to three variables in combination, and hence sparse histogram can
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(a) Visualization with randomly sam-
pled points.

(b) Proposed statistical association
driven sampled points.

Fig. 9 Sampling result in Hurricane Isabel data set when Pressure and Velocity variables are used.
Figure 9(a) shows results of random sampling and Figure 9(b) shows results of the proposed point-
wise information-driven sampling results for sampling fraction 0.03. By observing the PMI field
presented in Figure 9(b), it can be seen that the proposed sampling method samples densely from
the regions where the statistical association between Pressure and Velocity is stronger (Figure 9(b)).
(This image is reprinted from our previous work [20].)

be used to estimate the joint distribution for PMI calculation. If higher-dimensional
distributions are required, techniques proposed in [36], [26] can be used.

4.2.2 Pointwise Information-driven Multivariate Sampling

This section covers the multivariate sampling process that uses the aforementioned
pointwise informationmeasures as themultivariate sampling criterion. The sampling
method accepts data points with a higher likelihood if they have higher values
of pointwise information. Therefore, regions with higher PMI values (such as the
hurricane eye-wall region as seen in Figure 8(b) will be sampled densely compared
to regions with relatively low PMI values in the final sub-sampled data set.

The multivariate sampling method accepts a user-specified sampling fraction (U,
where 0 < U < 1) as an input parameter and produces a sub-sampled data set
with = = U × # (= < #) data points where # represents the total number of data
points. First, a joint histogram is constructed using all the variables that will be
used for sampling. Note that, for a bi-variate case, this results in a 2D histogram.
Each histogram bin in this joint histogram represents a value pair and a PMI value
can be estimated for each histogram bin. Therefore, the normalized PMI values
corresponding to each histogram bin can be used as a sampling fraction for that
bin and the bins with higher PMI values will be contributing more to the sample
selection process. For example, if a histogram bin has a normalized PMI value of 0.8,
then 80% of the data points from this bin will be selected. Note that selecting sample
points in this way ensures that the higher PMI valued data points are prioritized in the
sampling process and by doing so, data points with a stronger statistical association
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(a) All the data points sampled by
the proposed sampling method.

(b) Result of the query when ap-
plied on raw data.

(c) Result of the query when ap-
plied on PMI-based sampled data.

(d) Result of the query applied on
randomly sampled data.

Fig. 10 Visualization of multivariate query driven analysis performed on the sampled data using
Asteroid impact data set. Themultivariate query 0.13 < tev < 0.5 AND 0.45 < v02 < 1.0 is applied on
the sampled data sets. Figure 10a shows all the points selected by the proposed sampling algorithm
by using tev and v02 variable. Figure 10b shows the data points selected by the query when applied
to raw data. Figure 10c shows the points selected when the query is performed on the sub-sampled
data produced by the proposed sampling scheme and Figure 10d presents the result of the query
when applied to a randomly sampled data set. The sampling fraction used in this experiment is
0.07. (This image is reprinted from our previous work [20].)

are preserved in the sub-sampled data. The interested reader can find more details
of this sampling method in [20]. An example of this multivariate sampling is shown
in Figure 9. Figure 9(b) shows the sub-sampled data points for the Hurricane Isabel
data set when Pressure and Velocity fields are used. It can be observed that data
points from the eye-wall region were selected densely since the data points in that
region have high PMI values. In Figure 9(a), a randomly sub-sampled field is shown.
By comparing Figure 9(b) with Figure 9(a), it is evident that the proposed sampling
method preserves the statistically associated regions in the sub-sampled data set and
accurate post hoc multivariate feature analysis using such a data set can be done.
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(a) Visualization using raw
data.

(b) Reconstructed data visu-
alization using proposed sam-
pling algorithm.

(c) Reconstructed data visual-
ization using random sampling
algorithm.

Fig. 11 Reconstruction-based visualization of Y_OH field for a turbulent combustion data set.
Linear interpolation is used to reconstruct the data from the sub-sampled data sets. Figure 11(a)
shows the result of the original rawdata. Figure 11(b) provides the reconstruction result from the sub-
sampled data generated by the proposed method. Figure 11(c) presents the result of reconstruction
from randomly sampled data. The sampling fraction used in this experiment is 0.05. (This image
is reprinted from our previous work [20].)

4.3 Applications of Multivariate Sampling

4.3.1 Sample-Based Multivariate Query-Driven Visual Analysis

Query-driven visualization (QDV) is a popular technique for analyzing multivariate
features in a scientific data set [23, 42, 25]. Query-driven analysis helps the expert
to focus quickly on the region of interest, effectively reducing their workload. In this
example, the sub-sampled data set is used directly for answering domain specific
queries using an asteroid impact data set. The Deep Water Asteroid Impact data
set [39] was generated at the Los Alamos National Laboratory to study Asteroid
Generated Tsunami (AGT). The data set contains multiple variables. The volume
fraction of water variable, denoted by v02, and the temperature variable denoted
by tev, are used in this study. First the data set is sub-sampled using the above
association-driven multivariate sampling algorithm, retaining 7% of the data points.
The interaction between tev and v02 can be studied by performing the following
multivariate query: 0.13 < C4E < 0.5 �#� 0.45 < E02 < 1.0.

The result of the query-driven analysis is shown in Figure 10. Figure 10(a)
shows all the 7% sample points that were selected by the sampling method. In
Figure 10(b) the result of the query is shown when applied to the ground truth data.
Figure 10(c) depicts the query results when the sub-sampled data generated from
multivariate PMI-based sampling is used. Compared to the result generated from
random sampling, Figure 10(d), one can see that the multivariate association-driven
sampling can answer the query with higher accuracy.
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(a) ROI for Hurricane Isabel
data.

(b) ROI for combustion
data.

(c) ROI for asteroid data.

Fig. 12 Regions of interest (ROI) of different data sets used for analysis. Figure 12(a) shows the
ROI in Isabel data set, where the hurricane eye feature is selected. Figure 12(b) shows the ROI for
the Combustion data set, where the turbulent flame region is highlighted. Finally, in Figure 12(c),
the ROI for asteroid data set is shown. The ROI selected in this example indicates the region where
the asteroid has impacted the ocean surface and the splash of the water is ejected to the environment.
(This image is reprinted from our previous work [20].)

4.3.2 Reconstruction-Based Visualization of Sampled Data

The combustion data set provides a second example. The reconstruction technique
is as discussed in Section 3.3. An example visualization of a reconstructed data for
the Y_OH field of a combustion data set is presented in Figure 11. The sub-sampled
data set was generated using mixture fraction and Y_OH fields and in this example,
5% data points were stored. As can be seen, the reconstructed data, Figure 11(b),
generated using the data samples produced by the multivariate association-driven
sampling technique, produces a more accurate visualization compared to the recon-
struction obtained from randomly sampled data set, Figure 11(c). The black dotted
regions highlighted in Figure 11(b) and Figure 11(c) show the regions where the
reconstruction error is more prominent compared to the ground truth raw data shown
in Figure 11(a).

4.3.3 Multivariate Correlation Analysis of the Proposed Sampling Method

While analyzing multivariate data, application experts often study multivariate rela-
tionships among variables to explore variable inter-dependencies. Scientific features
in multivariate data sets typically demonstrate statistical association in the form of
linear or non-linear correlations among variable values. Therefore, it is important
to preserve such variable relationships in the sub-sampled data so that flexible post
hoc analysis can be done. In this section, the multivariate correlations obtained from
the reconstructed data (the reconstruction is described in Section 4.3.2) that used
multivariate association driven sampling are compared with the correlation values
that were obtained from reconstructed data that used randomly selected samples.
For analysis, a feature region (region of interest (ROI)) was selected for each data
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Table 2 Evaluation of multivariate correlation for feature regions. The feature regions for each
data set are shown in Figure 12 indicated by a black box. (This table is reused from our previous
work [20].)

Raw data PMI-based Sampling Random Sampling
Pearson’s
Correlation

Distance
Correlation

Pearson’s
Correlation

Distance
Correlation

Pearson’s
Correlation

Distance
Correlation

Isabel Data
(Pressure and QVapor) -0.19803 0.3200 -0.19805 0.3205 -0.1966 0.3213

Combustion Data
(mixfrac and Y_OH) 0.01088 0.4012 0.01624 0.04054 0.02123 0.4071

Asteroid Data
(tev and v02) 0.2116 0.2938 0.2273 0.2994 0.2382 0.31451

set. The ROI for each data set is shown in Figure 12 using the dark black box. In
Table 2 the results are presented. Pearson’s correlation coefficient is again used for
linear correlation and for measuring non-linear correlation, distance correlation [44]
is used. The purpose of this study is to demonstrate that the multivariate association
driven sampling technique is able to preserve the correlation among the modeled
variables more accurately compared to the random sampling based method. Table 2
demonstrates that when the PMI-based multivariate sampling is used, the correla-
tion in the reconstructed data matches closely with the correlation values obtained
from the raw data. The correlation values obtained from random sampling have a
higher deviation from the true correlation. This indicates that the multivariate PMI-
based sampling technique preserves both the linear and non-linear correlations more
accurately compared to the random sampling technique.

5 In situ Performance

An in situ performance study for univariate spatial sampling methods was per-
formed using the Nyx cosmology simulation code [4]. The three sampling methods
were implemented in C++ and were integrated into the Nyx simulation code in
the writePlotFile(); in situ I/O routine. As mentioned earlier, the sampling
routines were called each time step and the test performed on a cluster with Intel
Broadwell E5_2695_v4 CPUs (18 cores per node and 2 threads per core), and 125
GB of memory per node. For the in situ scaling study, the Nyx simulation was run for
100 time steps with 512×512×512 resolution per time step. For a distributed setting
where different parts of the data reside on different nodes, the data-driven univariate
sampling algorithm can be efficiently extended to handle such scenarios. Since his-
tograms are additive across data blocks, before starting this method, only MPI-based
communications needed are the global data minimum value, maximum value and
the local histograms computed based on the global data minimum/maximum. Next,
these local histograms can be "reduced" to achieve the global histogram and this
algorithm can begin.
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(a) (b)

Fig. 13 a) Comparison of in situ sampling performance among the three sampling methods:
histogram-based sampling (blue), regular sampling (orange), and random sampling (green). b)
Comparison of in situ sampled data I/O times among the three sampling methods: histogram-based
sampling (blue), regular sampling (orange), and stratified random sampling (green). (This image is
reprinted from our previous work [11])

The in situ results are shown in Figure 13where the run times for differentmethods
are shown. As can be seen from this figure, all the three methods scale quite well.
It is also visible that the entropy-based method is slightly more expensive since it
performsmore data analysis in situ. However, this increase in time is compensated by
themuch higher quality samples generated by this method. As shown in Figure 13(b),
the in situ I/O time is similar for all the three methods. Table 3 lists the time spent by
the sampling methods as a percentage of total simulation time. This table indicates
that, although the entropy-based method spends more time than other two naive
methods, the percentage time spent compared to the actual simulation time is still
negligible (only about 1.5%). Percentage disk I/O time for the sampled data is also
shown in this table and as observed, they are quite small fraction of the simulation
raw I/O.

Similar performance trends are expected for the multivariate sampling algorithm
since it also uses a distribution-based approach. However, the computation of joint
probability distributions will require more time compared to the univariate distri-
butions. In this case, to achieve viable in situ computational performance, one can
follow the joint probability distribution estimation approach of [36]. Another alterna-
tive is to use the Copula-based modeling schemes that are computationally efficient
for in situ environments [26].

6 Discussions and Limitations

In this chapter, in situ sampling methods for both univariate and multivariate data
sets have been discussed in detail. Examples of data-driven approaches demonstrate
their effectiveness compared the naive (albeit faster) regular/random methods. It is
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Table 3 In situ percentage timings of different sampling methods and I/O timings w.r.t the simu-
lation timings.

Hist.
Samp
%sim time

Reg.
Samp
%sim time

StRand.
Samp
%sim time

Hist.
I/O
%sim I/O

Reg.
I/O
%sim I/O

StRand.
I/O
%sim I/O

128 Cores 1.39 0.20 0.35 2.86 2.92 2.97
256 Cores 1.83 0.21 0.37 3.07 3.23 3.28
512 Cores 1.41 0.16 0.28 2.61 2.75 2.70

also important to note that data-driven methods may not necessarily be applicable
for all the time steps of a simulation. Specifically, for simulations (such as Nyx)
that are initialized on a random field and for first few time steps may have no
features in the data. For such cases, it is recommended that users try to employ
random/regular sampling methods as the data-driven method may not produce any
meaningful samples or capture any interesting features. Due to the lack of features
in the data, essentially, data-driven methods will reduce to behaving like random
methods. For multivariate sampling, it is expected that the variables used will have
some association or correlation among themselves so that the information-theoretic
measure PMI will capture such informative data points and the sampling will be
guided by it. If the variables are statistically independent, then the univariate sampling
technique can be applied instead of the multivariate sampling and as mentioned
above, for a collection of independent variables, the multivariate sampling will also
behave like a random sampling technique.

7 Future Directions and Conclusion

Looking forward in this research area, there are other in situ data reduction ap-
proaches that can leverage interesting sampling methods. Incorporating more data
properties when selecting important samples is one such avenue of research. Like-
wise, these methods can be applied to time-varying aspect of the data as well as
considering vector fields. The arrival of exascale architectures present opportunities
to incorporate more computationally expensive techniques as the compute resources
prioritize in situ approaches over post hoc analysis.

This chapter covered different sampling approaches that can be performed in
situ for data reduction. When considering univariate data for spatial sampling, data
distribution can be used to identify and save important scalars that are more likely
to be features in the data set. Similarly, for multivariate data set, point-wise mutual
information can be leveraged to identify locations that capture multivariate impor-
tance. Using these light-weight yet scalable methods, data-driven sampling can yield
results that are more meaningful to the scientist, compared to naive methods such as
random or regular sampling.
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