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Visual Analysis of Prediction Uncertainty in
Neural Networks for Deep Image Synthesis

Soumya Dutta, Faheem Nizar, Ahmad Amaan, and Ayan Acharya

Abstract—Ubiquitous applications of Deep neural networks (DNNs) in different artificial intelligence systems have led to their adoption
in solving challenging visualization problems in recent years. While sophisticated DNNs offer an impressive generalization, it is
imperative to comprehend the quality, confidence, robustness, and uncertainty associated with their prediction. A thorough
understanding of these quantities produces actionable insights that help application scientists make informed decisions. Unfortunately,
the intrinsic design principles of the DNNs cannot beget prediction uncertainty, necessitating separate formulations for robust
uncertainty-aware models for diverse visualization applications. To that end, this contribution demonstrates how the prediction
uncertainty and sensitivity of DNNs can be estimated efficiently using various methods and then interactively compared and contrasted
for deep image synthesis tasks. Our inspection suggests that uncertainty-aware deep visualization models generate illustrations of
informative and superior quality and diversity. Furthermore, prediction uncertainty improves the robustness and interpretability of deep
visualization models, making them practical and convenient for various scientific domains that thrive on visual analyses.

Index Terms—Uncertainty, Deep Learning, Visualization, Monte Carlo Dropout, Deep Ensembles, Image Synthesis, CNN.
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1 INTRODUCTION

The indisputable success of deep learning techniques
[1] has ushered new research frontiers in the scientific
visualization community. The novel ideas pioneered by
the latest development in learning theory find applications
in some of the primary areas of data visualization: data
representation and generation, the genesis of visualization,
predictive analytics, and feature extraction [2]. Unlike other
deep learning applications, scientific visualization and data
analysis applications require a thorough understanding of
the underlying models’ quality, robustness, confidence, and
prediction uncertainty. Such knowledge helps domain sci-
entists make informed decisions for furthering domain-
specific discovery [3], [4]. However, the literature survey
reveals that a thorough uncertainty analysis for the deep
visualization models is still missing – a gap that this paper
attempts to bridge.

Without any insight regarding the robustness, uncer-
tainty, and sensitivity of predictions of the deep visual-
ization models, application scientists could get misled into
flawed judgments and biased interpretations of the data.
In contrast, visualization models that convey prediction
confidence and sensitivity information can facilitate build-
ing trust among the domain scientists, and as a result,
such uncertainty-aware models could be easily adopted
in real-life scientific applications. Hence, it is essential
to thoroughly study the effectiveness and robustness of
the uncertainty-aware deep visualization models. While
the core machine learning community utilizes several ap-
proaches for estimating uncertainty in DNNs, their perti-
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nence for deep visualization models is yet to be explored.
From the existing deep uncertainty estimation methods,
it has been found that the ensemble-based methods often
outperform other alternatives by producing more accurate
predictions, and by measuring the variations from ensem-
ble predictions, the uncertainty can also be estimated [5],
[6]. However, deep ensembles inherently suffer from high
training costs, and if many ensemble members are used,
inference from them can also be expensive. In contrast, es-
timating prediction uncertainty using Monte Carlo dropout
(MC-Dropout) is a pragmatic approach that is computation-
ally feasible and produces robust uncertainty estimates [4].
The inference with the MC-Dropout method is conceptu-
ally similar to drawing samples from an implicit ensemble
model. Theoretically, MC-Dropout is also closely related to
approximate inferencing in deep Gaussian processes [4], [7].
More importantly, the generalizability, robustness, and wide
applicability of the MC-Dropout with minimal modification
to the network architecture makes it a promising candidate
for uncertainty estimation in deep visualization models.

This work comprehensively studies two principled deep
uncertainty estimation techniques: (1) deep ensembles and
(2) MC-Dropout-based methods for deep learning-based
volume-rendered image synthesizing tasks. Given input
view parameters, our deep uncertainty analysis framework
produces volume-rendered images and corresponding fine-
grained pixel-wise uncertainty and error estimates. The
wide applicability of such deep learning model-driven
image-based visualization for scientific data analysis has
been thoroughly demonstrated in several recent works [8],
[9], [10]. To comprehend, compare, and contrast the uncer-
tainty estimates of both of these methods, we provide a
visual analytics tool that enables in-depth exploration of the
characterization of model uncertainty and sensitivity across
the entire view space. Our tool also offers interactive view
space error visualization capabilities that help the users
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comprehend the accuracy of the predicted images.
We focus on two broad analysis goals as outlined below:
Comparing Uncertainty Estimation Methods: The first

objective is to compare deep ensembles and MC-Dropout
methods for estimating uncertainty in deep visualization
models [5], [6]. These methods are chosen for their ability
to add uncertainty information to existing neural networks
without significant changes. The study aims to determine if
both methods produce similar uncertainty patterns. If they
do, the more computationally efficient MC-Dropout method
may be preferable for resource-constrained applications,
and the study also examines how many ensemble members
are needed for reliable uncertainty estimates.

Utilizing Fine-Grained Uncertainty Information: The
second objective is to showcase the value of detailed uncer-
tainty and sensitivity information from models. This infor-
mation is particularly useful when making predictions for
unknown scenarios without ground truth data. Predicted
uncertainty can convey model confidence, even when error
measurements are unavailable. The study also investigates
the relationship between predicted uncertainty and predic-
tion error. If low uncertainty consistently corresponds to
low error (and vice versa), scientists can trust the model’s
output based solely on uncertainty information. Conversely,
the study explores scenarios where low uncertainty might
still lead to high error and vice versa. These analyses aim
to enhance our understanding of prediction reliability, accu-
racy, and sensitivity in DNNs for scientific applications.

Below, we succinctly summarize our contributions:
• We propose a comparative framework for comprehend-

ing, comparing, and contrasting uncertainty, error, and
sensitivity estimates generated from deep ensembles and
MC-Dropout-based methods for image-based deep volume
visualization models.
• We develop an interactive visual analytics tool for effec-

tively exploring fine-grained prediction uncertainty, error,
and sensitivity estimates from multiple image-based deep
volume visualization models. We demonstrate how incor-
porating uncertainty estimates makes the model predictions
more informative, trustable, and interpretable.

2 RESEARCH BACKGROUND AND UNCERTAINTY
IN DEEP NEURAL NETWORKS

In this section, first, we briefly summarize the relevant
research on deep learning for scientific visualization and un-
certainty visualization methods. Then, we introduce various
approaches to quantifying uncertainty in deep neural net-
works and focus on two well-known principled approaches
of uncertainty estimation in deep neural networks that are
explored in this work for deep image synthesizing models.

2.1 Deep Learning for Scientific Visualization
The application of deep learning in scientific visualization
is manifold. Lu et al. [11], and Weiss et al. [12] propose
techniques for generating compact neural representations
of scientific data. Visualization of scalar field data using
volume-rendered images is studied by Hong et al. [9], He et
al. [8], and Berger et al. [10] and using isosurfaces by Weiss et
al. [13]. Weiss et al. [14] further uses an adaptive sampling-
guided approach for volume data visualization. Another

research area of focus is the generation of spatiotemporal
super-resolution volumes from low-resolution data [15],
[16], [17], [18]. New models for domain knowledge-aware
latent space generation techniques for scalar data are also
proposed for compressing the volume data [19]. Further-
more, DNNs are used as surrogates for the generation
of visualization and exploration of parameter spaces for
ensemble data [8], [20], [21]. Variable-to-variable translation
technique for scientific data is proposed by Han et al. [22].
Han and Wang [23] explore Graph convolutional networks
for learning surface representations. For a more comprehen-
sive review of other deep learning applications in scientific
visualization, please refer to the state-of-the-art survey [2].

2.2 Uncertainty in Scientific Visualization
Visualizing uncertainty in scientific data analysis is a well-
studied research area. One of the earliest summaries of
uncertainty visualization techniques is by Pang et al. [24].
Potter et al. [25] conduct the visualization of spatial proba-
bility distributions defined over triangular meshes, which is
anteceded by a taxonomy of uncertainty visualization tech-
niques [26]. Brodlie et al. [27] report visualization methods
that are augmented with facilities for uncertainty estima-
tion. Liu et al. [28] use flickering to represent uncertainty in
volume data. Athawale et al. [29] further explore uncertainty
in volume rendering using non-parametric models.

Uncertainty visualization techniques for isocontouring
methods are also well-studied. Pöthkow et al. [30] compute
level crossing probability of adjacent points, which is further
enhanced to calculate the level crossing probability for each
cell in [31]. Whitaker et al. [32] inspect the visualization of
uncertainty in an ensemble of contours using contour box-
plots. Visual analysis of fiber uncertainty is studied in [33].
Bonneau et al. [3] compile a state-of-the-art survey of many
uncertainty visualization techniques. Recently, Gillmann et
al. summarize uncertainty visualization techniques for im-
age processing applications [34] and medical imaging [35].
Kamal et al. [36] describe the latest challenges and progress
in introducing uncertainty in visualization research.

2.3 Uncertainty in Deep Neural Networks
The wide popularity of deep learning techniques does
not accord with the overarching concern about their in-
terpretability, robustness, and generalizability in real-world
applications [37]. In general, the inability of the DNNs to
cater to uncertainty estimates can undermine the superior
empirical gains they achieve in various applications like
natural language processing, computer vision, and visual
analytics. Since the sources and characterization of uncer-
tainty vary widely from one application domain to the other,
formalizing and generalizing the techniques to measure
and quantify the uncertainty in an application-agnostic way
remains an open challenge. In what follows, we briefly
explain some sources of uncertainty in DNNs and different
methods adopted to emulate and address the same.

The predictive uncertainty [38], [39] of a DNN can be
broadly categorized into two groups – data or aleatoric un-
certainty and model or epistemic uncertainty. Data uncertainty
arises due to errors and noise in measurement systems. The
modeling (epistemic) uncertainty, on the other hand, can
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be due to multiple reasons. First, the state-of-the-art DNN
models produce a compact representation of the real-world
system that generates the observations. Such parsimony
often leads to prediction errors and associated uncertainty.
Second, over-parameterized networks often exhibit double
descent [40] – a phenomenon that leads to sharper prediction
and lower uncertainty. Third, many DNNs must be carefully
tuned using dropout [4], [41], learning-rate warm-up and
decay [42], regularization [43] etc. Different decisions for
such parameters lead to different learned configurations.

2.4 Techniques for Modeling Uncertainty in DNNs
In the following, we first briefly highlight several existing
methods of uncertainty modeling in DNNs and then discuss
deep ensembles and MC-Dropout-based uncertainty estima-
tion in detail, which are employed in our work.

Deterministic Methods. Enabling deterministic models
with prediction uncertainty is counter-intuitive. However,
one can explicitly model and train a network to quan-
tify uncertainty [44]. Alternative approaches use additional
components, extrinsic to the prediction models, to produce
uncertainty estimates [45].

Bayesian Methods. Probabilistic Bayesian methods en-
force flexible prior distributions on the parameters of
DNN to facilitate precise estimation of the predictive
uncertainty [38], [39]. In literature, stochastic gradient
MCMC [46], and variational inference [47] are such tech-
niques. However, they are often slower compared to the
first-order [48] and second-order methods [49].

Test-time Augmentation Methods. The test-time aug-
mentation methods derive inspiration from the utility of
ensemble methods and enrich model training using adver-
sarial examples [50], [51]. The key idea is to apply data aug-
mentation during test time and infer prediction uncertainty.

2.5 Ensemble Method
Ensemble methods work on the presumption that a set of
learners of similar capacity is often better than a single
learner [52]. Besides improving the generalization error,
ensemble methods provide a natural way to compute the
prediction uncertainty by evaluating the variety across dif-
ferent predictions [53], [54]. Hence, one can adopt ensemble
methods for quantifying the predictive uncertainty of DNNs
[5], [39], [55]. To that end, Lakshminarayanan et al. propose
deep ensembles [39] where individual DNNs are equipped
with two heads that model both the prediction and the
corresponding uncertainty. Moreover, the shuffling of the
training data and a random initialization of the training
process induces a good variety in the models to predict
the uncertainty for the given architectures and data sets.
Subsequent works inspired by deep ensembles [5], [6], [56],
[57] find ensemble methods for DNNs often outperform
techniques that rely on Monte Carlo-based dropout and
probabilistic back-propagation; and are more immune to
changes in data distribution.

2.6 MC-Dropout Method
Dropout. At a high level, Dropout [4], [41] is a regulariza-
tion technique that prevents DNNs from overfitting on the

training data by randomly masking a subset of the weights
during the forward and backward propagation. However,
deviating from this traditional application of dropout, Gal
et al. [4] discovered that dropout training in DNNs can be
cast as approximate Bayesian inference in deep Gaussian
processes. A pivotal consequence of such wisdom is that
dropout, when used in test time, can provide convenient
information about model (epistemic) uncertainty, which is
usually derived by collecting Monte Carlo (MC) samples of
the network output.

In the context of a supervised learning problem, con-
sider that we have a set of training data denoted as
D := {xn, yn}Nn=1. In this scenario, we aim to model the
conditional probability pθ(yn|xn) using an NN that is char-
acterized by its parameters θ. When we talk about applying
dropout to a neural network, it essentially involves the pro-
cess of adjusting the weights of each layer individually. This
adjustment is done by using a random mask, denoted as zn,
which follows either a Bernoulli or Gaussian distribution
specific to the data point. These masks, represented as zn,
are iid drawn from a prior distribution denoted as pη(z),
and this distribution itself is parameterized by η [41], [58].

Dropout training can be viewed as approximate
Bayesian inference [4], [59]. To elaborate further, we can in-
terpret the goal of training a supervised learning model with
dropout as aiming to maximize a log-marginal-likelihood:

log

∫ N∏
n=1

p(yn|xn, z)p(z)dz.

To maximize this challenging likelihood, it is common prac-
tice to turn to variational inference techniques [60], [61]
that introduce a variational distribution q(z) on the random
mask z and optimizes an evidence lower bound (ELBO):

L(D) = Eq(z)

[
log

∏N
i=1 pθ(yi|xi,z)pη(z)

q(z)

]
=

N∑
n=1

Eq(z) [log pθ(yn|xn, zn)]− KL(q(z)||pη(z)),

where KL(q(z)||pη(z)) = Eq(z)[log q(z)− log p(z)] represents a
regularization term based on Kullback-Leibler (KL) diver-
gence. Whether this KL term is explicitly incorporated dis-
tinguishes regular dropout [41], [58] from their Bayesian
extensions [4], [62].

Uncertainty Estimation in DNNs with MC-Dropout.
As mentioned above, dropout, when used during inference,
enables estimation of model (epistemic) uncertainty as pro-
posed by Gal et al. [4]. Estimating deep model uncertainty
using MC-Dropout has become a widely popular technique,
and it is performed via several stochastic forward passes
through the network and averaging the outcomes. The vari-
ability (standard deviation) in outcome due to the stochastic
forward passes can be quantified and interpreted as model
prediction (epistemic) uncertainty. Theoretically, this uncer-
tainty is equivalent to performing Bayesian inference in
deep Gaussian processes [7].

2.7 Demonstration of Ensemble and MC-Dropout Un-
certainty in DNNs
Here, we consider a DNN for a regression problem. The
model’s architecture is shown in Fig. 1a. We add dropout
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(a) DNN architecture. (b) Synthetic training data. (c) Synthetic testing data.

Fig. 1: Fig. 1a shows the DNN architecture used for demonstration. Fig. 1b and Fig. 1c show the synthetic training and test
data used to demonstrate the MC-Dropout-based uncertainty estimation technique. The synthetic data is generated using
the function f(x) = xsin(x) with an added Gaussian noise (ϵ ∼ N (0, 0.1)).

(a) Deep Ensemble (b) MC-Dropout

Fig. 2: These plots illustrate the estimated uncertainty for
Ensemble and MCDropout methods. The blue dotted line in
Fig. 2a and 2b show the mean prediction, and the light red
envelope shows the prediction uncertainty.

before the final layer to capture model uncertainty dur-
ing inference. The ensemble model does not employ any
dropout layer. We generate synthetic training and test data
from the function: f(x) = xsin(x). The output of the func-
tion f(x) is slightly perturbed by adding a small Gaussian
noise (ϵ ∼ N (0, 0.1)) to each data point. The corresponding
training data is shown in Fig. 1b, where the green and red
dots represent the training and the original data (without
perturbation). Fig. 1c shows the test data. We train the model
for 1000 iterations using the Adam optimizer [48] with the
learning rate set to 0.001, and β1 and β2 set to 0.9 and 0.999,
respectively. We use MSE as the loss function. To generate
the ensemble, we train 50 instances of this DNN without
any dropout, resulting in an ensemble of 50 members. We
keep the hyper-parameters and training configurations the
same as the MC-Dropout method. We randomly shuffle
the training data to train each learner and subsequently
combine their predictions during inference.

The inference for MC-Dropout is performed by setting
the model to evaluation mode and enabling dropout. The
model predicts the output m = 100 times for each input.
The average computed over these samples provides the
expected model prediction, and the standard deviation is
considered the uncertainty. For ensemble methods, each of
the 50 learners infers on each test example. The average
computed over these outputs provides the expected model
prediction, and the corresponding standard deviation is
considered the ensemble prediction uncertainty.

We present the model prediction results for ensemble
and MC-Dropout methods in Fig. 2a and 2b, respectively.
The blue dots show the expected (mean) prediction. The
light red envelope shows the extent of prediction uncer-

tainty. According to Fig. 2a and 2b, the uncertainty esti-
mated by the ensemble method produces a more uniform
uncertainty with minor variabilities. However, the uncer-
tainty estimates made by the MC-Dropout increase with
the curvature of the data, as seen in Fig. 2b. Notably, the
estimated uncertainty is much tighter when the curvature is
low. So, MC-Dropout tends to produce more pronounced
uncertainty in the regions where the data value changes
rapidly compared to the ensemble method.

For the synthetic example, one may be tempted to con-
clude that the MC-Dropout produces a wider uncertainty
band. However, note that the ensemble method reduces the
variance without affecting the bias. Therefore, concluding
about the characteristics of the uncertainty bounds for both
of these methods using only this synthetic problem may not
be sufficient. In Section 6, we elaborate on the error rates
and uncertainty estimates in real-world data. We justify the
difference by showing the flexibility of the MC-Dropout
methods and recognizing that there is no need to retrain
the model or store the parameters.

3 PREDICTION UNCERTAINTY IN IMAGE-BASED
DEEP VISUALIZATION MODELS

3.1 Model Description
Our image-based deep visualization model takes view an-
gles, Pview = {Azimuth (θ ∈ [0, 360]) and Elevation (ϕ ∈
[−90, 90])}, as input and produces a volume-rendered im-
age I of the data as output. The model architecture is shown
in Fig. 3, inspired by insitunet [8]. First, Pview is passed
through a few fully connected layers, and then the generated
latent vector is reshaped into a 4 × 4 low-resolution image.
Finally, the low-resolution image is up-sampled sequentially
to produce an image of resolution 128 × 128. The model
uses five residual blocks [63] to perform up-scaling via 2D
convolution of the image. We use ReLU as the activation
function throughout the network except for the last layer,
where we use hyperbolic tangent (Tanh) to normalize each
output in the range [−1, 1]. The structure of a residual block
is shown as an inset on the right in Fig. 3. Note that batch
normalization is used to stabilize the model during training.

3.2 Quantifying Uncertainty for MC-Dropout Method
As seen in Fig. 3, we augment a 2D dropout layer at
each residual block followed by the ReLU activation [64]
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Fig. 3: Architecture of our deep visualization model with the
inset on the right showing the structure of a residual block.

to enable the MC-Dropout-based model uncertainty esti-
mation. The dropout also helps in regularization during
training. Since we aim to capture the pixel-level prediction
uncertainty of the model, we add the 2D dropout layers at
each residual block where the 2D convolution operations
take place, and the output image is synthesized step-by-
step. Note that, during inference, the entire 2D channels will
be dropped randomly, and as a result, the variability of the
model prediction will be reflected in the output pixel values.
This variability will give us the MC-Dropout uncertainty
estimates. After the training is done, during inference, the
dropout is first enabled. Then, for a given test sample, m
stochastic forward passes are performed that produce m
predicted images. Now, the average image is treated as
the expected model output, and the pixel-wise standard
deviation reflects the prediction uncertainty.

3.3 Quantifying Uncertainty for Ensemble Method

We use the same model shown in Fig. 3 to generate a deep
ensemble of visualization models. However, in this case, we
do not use any dropout layers. We generate an ensemble
of 20 members by training each member separately. We use
the same training data that is used to train the MC-Dropout
model for training ensemble members. We randomly shuffle
the training data to train each member while creating the en-
semble. After the training of all the ensemble members, for
a given test sample view, first, output images are generated
from each ensemble member individually. Then, the average
image is considered the expected output, and the pixel-wise
standard deviation of all the ensemble member outputs is
collected to estimate ensemble prediction uncertainty.

Loss Function and Hyperparameters. For both MC-
Dropout and Ensemble method, the models are trained on
a combined loss function L = Lmse + Lfeat. The first part
of the loss function is the conventional mean squared error
loss (Lmse) that computes the pixel-wise differences of the
predicted image with the ground truth image. The latter
part is the feature reconstruction loss (Lfeat) [8] computed

according to the output from the layer relu1 2 of the pre-
trained VGG-19 model. The training uses batch size 64 with
the Adam optimizer [48] with a learning rate set at 0.0001
and β1 and β2, the configurable parameters of Adam, set at
0.9 and 0.999, respectively. For the MC-Dropout model, a
dropout probability η = 0.1 is used, and no dropout is used
for training ensemble members. For both the MC-Dropout
and Ensemble methods, all the models are trained for 1500
epochs to maintain consistency and comparability.

4 UNCERTAINTY, ERROR, AND SENSITIVITY COM-
PUTATION FRAMEWORK

The conceptual framework for pixel-wise uncertainty and
error estimation is presented in Fig. 4. During inference,
for a given test viewpoint, both MC-Dropout and Ensemble
methods generate a set of images. While for MC-Dropout,
these images are results of Monte Carlo sampling, for the
Ensemble method, each ensemble member produces a pre-
dicted image for the same input test viewpoint. These two
methods are represented in two sides of Fig. 4, in Section 1
and Section 3. Now, given a set of images for a specific test
input, how the pixel-wise uncertainty and error quantities
are computed are shown in Section 2, which is the central
part of Fig. 4. These operations, demonstrated in Section 2,
are identical for both MC-Dropout and Ensemble methods.

4.1 Computation of Pixel-wise Uncertainty

To allow the users to visualize and comprehend the uncer-
tainty in fine-grained detail, we compute prediction uncer-
tainty at every pixel for each RGB color channel separately.
The combined pixel-wise uncertainty is then estimated by
adding all the channel-wise uncertainties into a single im-
age. The uncertainty in this work is quantified by computing
the standard deviation value of channel-wise pixel intensi-
ties over all the sample images, as shown in Fig. 4. The
bottom half of Section 2 in Fig. 4 depicts this process.

4.2 Computation of Pixel-wise Error and Error Variance

Besides uncertainty, we also compare the predicted images
with the ground truth to compute pixel-wise error values.
The error values are estimated as the absolute difference
in channel-wise intensity values. This error computation is
performed for each image for each color channel. Then, the
average error image is computed for each channel. Finally,
the combined error image is constructed by adding channel-
wise average error values. Since, for a specific test sample,
both MC-Dropout and Ensemble methods produce multiple
predicted images, we also quantify the pixel-wise error
variability values by computing pixel-wise error standard
deviation for each color channel. Finally, the average and
combined error standard deviation image is constructed by
averaging and then adding the error standard deviation
values of the three color channels. These error standard de-
viation images reflect the robustness of the error calculation.
The top half of Section 2 in Fig. 4 demonstrates this error and
error standard deviation computation steps.
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Fig. 4: Uncertainty, Error, and Error standard deviation
estimation for both MC-Dropout and Ensemble method.
RGB Channel-wise uncertainty and error quantities are com-
puted for both methods.

4.3 Input Space Sensitivity and Its Robustness
Next, we utilize the backpropagation step of our differen-
tiable visualization model to perform a sensitivity analysis
of the output image to the perturbations of the input view
parameters. We first generate the output image using for-
ward propagation and compute the L1 norm from the pixel
values [8]. We then perform the backpropagation step to
estimate the gradient of the L1 norm. The absolute sum
of the estimated gradients for the two view angles gives
us the total sensitivity for the given input. For the MC-
Dropout method, we repeat the exact computation for 100
Monte Carlo passes during inference. Finally, we compute
the mean sensitivity, which reflects the expected sensitivity,
and the standard deviation from the samples indicates the
robustness of the estimated sensitivity. For the Ensemble
method, we perform the above steps for each ensemble
member separately and then take the average sensitivity
value as the expected sensitivity, and the standard deviation
indicates the robustness of the estimated sensitivity values.

5 INTERACTIVE VISUAL ANALYTICS OF UNCER-
TAINTY, ERROR, AND SENSITIVITY

The proposed interactive visual analytics interface is shown
in Fig. 5. The primary goal of the interface is to enable
users to pairwise compare and contrast the characteristics
of various deep uncertainty estimation methods for deep
image-based visualization models. Even though we focus
on Ensemble and MC-Dropout-based uncertainty in this
work, the proposed tool is not hard-wired to only these
two methods. Results from any other uncertainty estimation
methods can be easily loaded into this tool for compari-
son. The interface enables fine-grained pixel-wise analysis
of prediction uncertainty, error, and model sensitivity for
individual RGB color channels to reveal detailed patterns
about these quantities. Since our visualization model takes
view angles as inputs and generates corresponding volume-
rendered images, we provide the uncertainty, error, and
sensitivity pattern for the entire view space so that users
can identify and study viewpoints that result in high/low
uncertainty or error. This inspection provides the users
insights about how prediction uncertainty and error behave

in the entire view space when estimated by two different
methods. In the following, we discuss various components
of our visual analytics tool and their usability.

5.1 Uncertainty and Error Visualization

Our visual analytics interface has three main components:
(A) Parallel Coordinates Plot (PCP), (B) Uncertainty and
Error heatmap plots, and (C) Image view panel (Fig. 5).
The interface presents the uncertainty and error patterns for
the entire view space (Azimuth (θ ∈ [0, 360]) and Elevation
(ϕ ∈ [−90, 90]) ) for MC-Dropout and Ensemble method
side-by-side as heatmaps (see Section B in Fig. 5). The x
and y-axis of the heatmaps represent azimuth and elevation
angles, respectively. Note that our tool allows comparison
between two uncertainty methods at a time. If other uncer-
tainty methods are available, users can interactively select
any pair of methods using the model selection drop-down
at the top. Users can also interactively load the results of
different data sets for exploration using the data set selection
drop-down. Placing heatmaps side-by-side allows a direct
comparison of the patterns of uncertainty and error between
the two selected uncertainty estimation methods. We also
provide heatmaps of the error standard deviation, indicat-
ing the robustness of the error estimates. The top three
heatmaps show the uncertainty, error, and error standard
deviation plots for the MC-Dropout method, and the bottom
three plots show the same plots for the Ensemble method.
To generate the heatmaps, we sample the entire view space
densely and quantify aggregated uncertainty, error, and
error standard deviation for each viewpoint. First, we com-
pute the quantities for three color channels separately and
then add them to compute the final uncertainty and error
value. Each cell in the heatmap indicates uncertainty/error
value for a particular viewpoint. For visualization, the value
at each cell is mapped to a color using a perceptually
uniform sequential colormap as shown in Fig. 5. The users
can interactively investigate these heatmaps for a specific
image color channel by selecting the desired color channel
from the top right channel selector.

The heatmaps allow interactive lasso selection to se-
lect a set of viewpoints for detailed inspection. In Fig. 5,
such a lasso selection is highlighted by a yellow-colored
region. Note that these heatmaps are linked views; hence,
selecting a region in one heatmap automatically highlights
the same region on the other heatmaps. The image view
panel provides the corresponding ground truth images, pre-
dicted mean images, uncertainty, error, and error standard
deviation images of the selected viewpoints on the right
side (Section C in Fig. 5). Here, the users can visually
compare and contrast the estimated pixel-wise uncertainty,
error, and error variability for the selected views to gain
detailed insight into uncertainty and error characteristics.
In Fig. 5, we show the results using the Mixture Fraction
(mixfrac) variable of Turbulent Combustion data having
spatial resolution 360×240×60. We observe that the regions
that show the complex flame structure and its boundaries
incur higher uncertainty and error than the other regions.
This observation is consistent for both MC-Dropout and
Ensemble methods. The users can also investigate the uncer-
tainty, error, and error variability for each color channel on
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Fig. 5: Interactive Uncertainty analysis interface showing results for Combustion data. The analysis interface allows the
users to effectively compare and contrast the uncertainty and error estimates produced by both MC-Dropout and Ensemble
methods, where (A) shows PCP, (B) shows uncertainty and error heatmaps, and (C) shows the image view panel.

Fig. 6: Popup window for a specific viewpoint shows RGB channel-wise and combined uncertainty and error images to
allow detailed comprehension of the predicted results.

demand by clicking on an image in the Image view panel.
Upon clicking, a popup window shows the RGB channel-
wise results for the selected view for both MC-Dropout
and Ensemble methods. Such a popup window is shown
in Fig. 6, where channel-wise images are presented. By
investigating the channel-wise images for the selected view,
the users can study how uncertainty and error influence
each color channel’s prediction.

Finally, a PCP is provided (Section A) to allow compar-
ison and correlation study of computed uncertainty, error,
and error standard deviation values for the two uncertainty

estimation methods. The lasso selection in the heatmaps
updates the selection in PCP, and only the selected view-
points are highlighted, as seen in Fig. 5 (Section A). The PCP
maps uncertainty, error, and error standard deviation for the
MC-Dropout and Ensemble method as parallel coordinate
axes. Users can interactively brush single or multiple axes
of interest to query a specific range of views, study the
existence of correlation among the selected view, and further
inspect the resulting images in the Image view panel.

By inspecting the patterns from the heatmaps, we learn
that the uncertainty and error produce similar patterns in
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(a) Sensitivity panel of the interface that shows sensitivity
heatmaps for both MC-Dropout and Ensemble method. The low-
sensitive region at the center of the heatmap is selected (shown
in yellow), and corresponding images are shown on the right.

(b) Two highly sensitive regions from the heatmap plot are
selected (shown in yellow), and the corresponding images are
provided on the right.

Fig. 7: Sensitivity panel of our visual analytics interface is shown in Fig. 7a. The results of the mixfrac variable of Combustion
data are shown. Fig. 7b highlights images for two different highly-sensitive view space regions.

the view space, meaning that they are correlated. A similar
observation is seen from the PCP, too, where the selected
viewpoints form a cluster, indicating that the views where
the model produces higher uncertainty also incur higher
error. Next, we observe that the overall pattern in the uncer-
tainty and error heatmaps for MC-Dropout and Ensemble
methods are also correlated. The error variability maps
reveal that the error variability is smaller for the Ensemble
method; hence, the error standard deviation heatmap is
cleaner at the bottom compared to MC-Dropout.

5.2 Sensitivity Visualization

Besides the uncertainty and error estimates, we also com-
pute the input view space sensitivity of the models. The
computation of the sensitivity values is discussed in Sec-
tion 4.3. The sensitivity measure, computed for each view,
indicates how rapidly the output images change if the input
view changes slightly. Since both MC-Dropout and Ensem-
ble methods involve using multiple sample images to com-
pute mean sensitivity, we further quantify the robustness of
the estimated mean sensitivity by measuring the standard
deviation of the sensitivity values. Hence, in the sensitivity
visualization panel (see Fig. 7a), we present both the sensi-
tivity and sensitivity standard deviation heatmaps. Similar
to the uncertainty heatmaps, the users can select a region of
interest from these heatmaps, and the corresponding view-
points are shown on the Image panel. Using this interface,
users can study the sensitivity patterns of the trained models
for the entire input view space and interactively visualize
viewpoints with lower/higher sensitivity.

Fig. 7a shows the sensitivity results for the mixfrac vari-
able of Combustion data. The yellow selected region at the
center depicts a low-sensitivity region. The corresponding
views are shown on the right. We observe that the frontal
views of the data that cover a larger screen area produce less
sensitivity, i.e., changing the input view angles slightly for
these views will not change the output image significantly.
In contrast, Fig. 7b shows views of high sensitivity for two
different regions in the heatmaps. We find that the side

Fig. 8: Visualizing prediction uncertainty for vel field of
Isabel data. The top two heatmaps show view space uncer-
tainty and error plots for the MC-Dropout, and the bottom
two heatmaps show similar plots for the Ensemble method.
The upper left corner, the region with high uncertainty, is se-
lected for exploration. Two sets of representative viewpoints
from the selected region are shown on the right side.

views of the data are selected where the data dimension is
the smallest. Naturally, when such view angles are changed,
the images are likely to change rapidly, covering a larger
screen space and resulting in a higher sensitivity.

5.3 Visual Analysis using Hurricane Isabel Data
We use the Velocity magnitude (vel) field of Hurricane Isabel
data with spatial resolution 250 × 250 × 50 to show the
results of the proposed method. Fig. 8 shows the results of
prediction uncertainty for both MC-Dropout and Ensemble
methods. The uncertainty is higher for both methods for
higher values of Azimuth angle (θ). To inspect images with
high uncertainty, we select a region from the top left corner
of the uncertainty map (shown in yellow). Results for the
two most uncertain views are shown on the right among the
selected viewpoints. We see that the pixels at the boundary
of the vel field result in the highest uncertainty for both MC-
Dropout and Ensemble methods. Next, we investigate the
sensitivity heatmap generated by the Ensemble method. The
sensitivity heatmap of the MC-Dropout method also shows
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Fig. 9: Visualizing input space sensitivity for vel field of
Isabel data. Several low and high-sensitivity viewpoints are
highlighted. It is observed that the front and back views of
the data produce low sensitivity, while the slanted and side
views tend to incur high sensitivity.

Fig. 10: Visualizing prediction uncertainty for tev field of
Asteroid data. The top row shows a representative view
with low uncertainty, and the bottom row shows an example
view with high uncertainty.

the same pattern as the Ensemble method. We depict eight
representative views selected from high and low-sensitivity
regions of the heatmap. The flat front and back views of
the vel field produce lower sensitivity, while the slanted and
side views produce higher sensitivity.

5.4 Visual Analysis using Asteroid Impact Data
After the Isabel data, we analyze uncertainty and error by
using the Temperature (tev) field of Asteroid impact data
with spatial resolution 300 × 300 × 300. The results of
prediction uncertainty are presented in Fig. 10. We observe
minor differences in the heatmaps of uncertainty generated
by the MC-Dropout and Ensemble method. Images for
representative views with high and low uncertainty are
shown on the right. The top row shows a viewpoint with
low uncertainty when the data is observed from the back
side of the asteroid-impacted region. However, the top view
of the asteroid impact data produces high uncertainty (the
bottom row in the right of Fig. 10) as the data from this view
shows complex structures of the tev field.

Next, we visualize how the uncertainty and error vary
across different color channels of the generated images. In

Fig. 11: Visualizing error (top row) and error standard
deviation (bottom row) for asteroid data for the complete
input view space. The error maps are produced by the MC-
Dropout method. It is observed that the error maps are
consistent across different color channels. However, the red
channel produces maximum error variability while the blue
channel incurs minimum error variability.

Fig. 12: Visualizing pixel-wise uncertainty, error, and error
variability for RGB and combined channels for a representa-
tive view for tev field of Asteroid data. It is observed that the
uncertainty and error vary across different color channels.

Fig. 12, we show the channel-wise uncertainty, error, and
error standard deviation images of a representative view
from the asteroid data. The blue channel incurs higher
uncertainty than the red and green channels. The pixel-
wise error and error standard deviation patterns also vary
across the three color channels. We also note that high-level
uncertainty, error, and error standard deviation patterns are
comparable for both MC-Dropout and Ensemble methods.

Finally, channel-wise error and error standard deviation
for the entire view space for the asteroid data are provided
in Fig. 11. The top row shows the error, and the bottom row
shows the error variability heatmaps. While we observe that
the error heatmaps are similar across different channels, the
error variability heatmaps demonstrate different character-
istics. Notably, the blue channel has the minimum, while the
red channel incurs the maximum error standard deviation.

5.5 Implications of the Analysis Results

• Both methods produce similar uncertainty and error
heatmaps, and the patterns of higher uncertainty leading
to higher errors are consistent for each method. Pearson’s
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TABLE 1: Pearson’s correlation between uncertainty and
error values computed on the test set. Observations: (1)
Uncertainty and error are positively correlated in both meth-
ods, and (2) uncertainty, error, and sensitivity are also pos-
itively correlated between the MC-Dropout and Ensemble
methods.

MC-Un, MC-Err Ens-Un, Ens-Err MC-Un, Ens-Un MC-Err, Ens-Err MC-Sen, Ens-Sen
Isabel 0.835 0.984 0.841 0.919 0.985
Comb 0.9227 0.773 0.878 0.992 0.974
Aster 0.819 0.963 0.863 0.913 0.959

correlation analysis confirms a strong positive correlation
between uncertainty, error, and sensitivity within and across
the two methods (refer to Table 1). This suggests that the
MC-Dropout method can be a reliable choice for resource-
constrained applications, with comparable uncertainty and
sensitivity characteristics to the Ensemble method. How-
ever, it should be noted that the Ensemble method yields
higher PSNR (refer to Table 2), indicating a trade-off be-
tween accuracy and computational cost.
• The study underscores the importance of providing un-

certainty and sensitivity information alongside model pre-
dictions to gain experts’ trust in the results. Uncertainty,
error, and sensitivity are closely related, with higher un-
certainty often corresponding to higher errors. In situations
where ground truth is unavailable, uncertainty can serve as
a valuable indicator for experts, enhancing the credibility of
predicted images.
• The analysis also identifies a limitation in deep visu-

alization models, where regions with sharp changes (e.g.,
edges and high gradient features) tend to exhibit higher
error and uncertainty. This highlights the need for further
enhancements to improve the accuracy of these visualiza-
tion models, potentially through the incorporation of GAN-
based training frameworks [8].

6 PARAMETER AND PERFORMANCE STUDY

We use a GPU server with Nvidia Quadro P5000 GPUs for
the experimentation. The analysis is done on a MacBook
Pro with an Apple M1 Pro chip with 10 CPU and 16 GPU
cores and 16GB memory. All models are implemented in
PyTorch [65]. The training set consists of 10, 000 randomly
sampled viewpoints, and the samples are randomly shuffled
to create variability among ensemble members. The evalua-
tions are done on a test set of 512 viewpoints.

Quantitative Evaluation of Prediction Quality and
Error. In Table 2, we provide a quantitative evaluation of
model prediction quality and error among models with no
dropout, MC-Dropout, and Ensemble methods. We perform
this evaluation on the test set and report average RGB
channel-wise and combined PSNR and Mean squared error
(MSE) values. For the MC-Dropout method, we use 100 MC
samples and dropout probability η = 0.1; for the Ensemble
method, 20 ensemble members are used. We observe that for
all the data sets, the PSNR and MSE for no dropout method
are comparable with the MC-Dropout method. However,
the MC-Dropout method has the added advantage of un-
certainty information over the no-dropout method. Notably,
the Ensemble method consistently produces the highest
PNSR, making it the best performer.

Impact of Different Number of Monte Carlo Samples.
The MC-Dropout method requires sampling the model sev-
eral times to produce the results. To study the impact of the
sample numbers on the model prediction, we evaluate how
the average prediction uncertainty and average Peak Signal-
to-Noise Ratio (PSNR) change by varying the number of MC
samples over the test set. In Fig. 13a and Fig. 13b, we show
the results as the number of MC samples is increased up
to 250. We find that 100 MC samples can produce robust
estimates for all three data sets as the uncertainty and PSNR
saturate around 100 MC samples.

Impact of Number of Ensemble Members. Since the
number of members in the ensemble impacts the total
training time, we study how many members would be
sufficient to produce robust uncertainty and PSNR values.
From Fig. 13c and Fig. 13d, we observe that both average
uncertainty and average PSNR, computed over the test set,
tend to saturate when 20 members are used.

Impact of Different Dropout Probabilities. In Fig. 14a,
we highlight how changing the dropout probability (η)
impacts the overall average PSNR values in the test set for
the predicted images. For each observation, 100 MC samples
are used. It is found that the PSNR value decreases slowly as
the dropout probability is increased. We expect this trend to
continue for higher dropout probabilities. This experiment
(analyses shown in Table 2) and the visualization results
presented in the above sections show that a small dropout
probability can adequately capture the model uncertainty
without compromising the prediction quality. Hence, for all
our analyses, we use the fixed dropout probability η = 0.1.

Visual Comparison of Predicted Images for MC-
Dropout and Ensemble Methods Under Different Param-
eter Configuration. Fig. 14b allows a visual comparison of
the predicted (mean) images from the two methods for a
specific test viewpoint for the mixfrac variable of Combus-
tion data. The top row shows the predicted images when the
dropout probabilities are varied from 0.5 to 0.1. The bottom
row shows images for that viewpoint when the number of
ensemble members increases from 4 to 20. Even though the
images look visually similar, there are subtle differences.
The PSNR values (provided at the top of each image) convey
the quality of each parameter configuration. The ground
truth for this test view is shown on the left side at the center.
Expectedly, the PSNR improves as the dropout probability
declines. Similarly, the PSNR improves for the Ensemble
method as the number of ensemble members increases.

Computational and Storage Performance Evaluation.
Table 3 presents the MC-Dropout and Ensemble model’s
computational cost and storage needs. Training all the en-
semble members takes significantly longer than training the
MC-Dropout model. The storage for all the parameters from
all the models is also high. Our experiments show that
the inference time is shorter for the Ensemble model than
for MC-Dropout. However, this minor lag is not a limiting
factor for adopting the MC-Dropout method for practical
applications. The flexibility of uncertainty estimation using
a single model can easily outweigh such minimal perfor-
mance differences with the Ensemble method. We perform
this evaluation systematically, generating 100 MC samples
for each view. We train 20 ensemble members and conduct
inference using all the 20 members on the test set.
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(a) #MC samp. vs. Uncer-
tainty

(b) #MC samp. vs. PSNR (c) #Ens vs. Uncertainty (d) #Ens vs. PSNR

Fig. 13: Fig. 13a and Fig. 13b show how the prediction uncertainty and PSNR are impacted by the number of Monte
Carlo samples used. It is observed that the estimated uncertainty and PSNR are saturated when around 100 Monte Carlo
samples are used. Fig. 13c and Fig. 13d show the change in estimated uncertainty and PSNR when the number of ensemble
members is varied. We observe that ∼20 ensemble members tend to produce consistent prediction uncertainty and PSNR.

TABLE 2: Comparison of channel-wise and average prediction quality for no dropout, MC-Dropout, and Ensemble method
for three different data sets. The ensemble method produces the highest quality of predictions among the three test cases,
while no dropout and MC-Dropout methods produce comparable quality when dropout probability η = 0.1 is used.

Prediction Quality and Error Evaluation
Peak Signal to Noise Ratio (PSNR) Mean Squared Error (MSE)

Red Channel Green Channel Blue Channel Average Red Channel Green Channel Blue Channel Average

Isabel
No dropout 30.48847 31.23577 31.18883 30.97102 0.00125 0.00036 0.00068 0.00077

MC-Dropout (100 MC samples) 29.89097 30.4523 30.92661 30.4233 0.00142 0.00044 0.00071 0.00085
Ensemble (20 mems) 34.23113 34.37377 35.18207 34.59566 0.00058 0.00019 0.00031 0.00036

Combustion
No dropout 33.28172 32.80587 32.04885 32.71214 0.00039 0.00061 0.00071 0.00057

MC-Dropout (100 MC samples) 32.57521 32.42585 31.92816 32.30974 0.00045 0.00061 0.00068 0.00058
Ensemble (20 mems) 35.11684 35.45715 34.27021 34.94806 0.00025 0.00031 0.0004 0.00032

Asteroid
No dropout 32.13364 34.15641 32.04537 32.77847 0.00068 0.00034 0.00017 0.0004

MC-Dropout (100 MC samples) 32.03944 34.01588 32.16493 32.74008 0.00068 0.00035 0.00017 0.0004
Ensemble (20 mems) 34.58787 36.60189 33.78471 34.99149 0.00038 0.00019 0.00012 0.00023

TABLE 3: Training and inference timings and storage requirements for MC-Dropout and Ensemble method.

MC-Dropout Ensemble

Training time
(Hrs)

Avg. inference time
per view using 100 MC

samples (Secs.)

Storage
(MB)

Training time
(Hrs)

Avg. inference time
per view using 20

Ensemble members (Secs.)

Storage
(MB)

Combustion 17.74 0.0771 72 235.42 0.0324 1440
Isabel 17.6 0.0768 72 239.09 0.0313 1440

Asteroid 17.86 0.0852 72 164.08 0.0247 1440

(a) Dropout prob. vs.
PSNR

(b) Comparison of MC-Dropout vs.
Ensemble.

Fig. 14: Fig. 14a depicts how changing the dropout proba-
bility impacts the quality of PSNR. Fig. 14b compares mean
images by MC-Dropout and Ensemble method.

7 DISCUSSION

Ensemble methods have significantly more computation
and memory costs (see Table 3), limiting their usage and
deployment in many resource-constrained real-world prob-
lems. One can reduce the number of models to reduce
computational and memory costs; however, such reduction
is often non-trivial. Along this line, Distillation [66] is an
approach where the ensemble is reduced to one model by
teaching a single network to represent the knowledge of
a group of neural networks. In more recent times, similar
techniques for estimating uncertainty based on single mod-

els have emerged [67]. It is important to emphasize that
ensemble learning has become the prevailing approach in
contemporary AI systems [68]. Consequently, it is widely
adopted as a prominent tool for uncertainty estimation and
often serves as a benchmark for our analysis. The evolution
of computational infrastructure and the proliferation of data
resources have facilitated the emergence of applications in
which multiple models collaborate harmoniously to en-
hance the overall product experience [69]. These models
exhibit characteristics that make them amenable to cali-
bration, retraining, maintenance, and optimization to align
with specific complementary objectives or cater to distinct
domains [70]. It is worth noting that, in such applications,
the conventional practice is to train multiple models rather
than a single model that can provide predictive uncertainty.

Training a deep ensemble and generating predictions,
given a reasonable time budget, requires parallel GPU-
based facilities. This potential inconvenience of the deep
ensemble may motivate one to find a practical alternative,
the MC-Dropout method. Our studies show that although
Ensemble methods produce superior prediction quality, the
MC-Dropout method results are at par with the Ensemble
methods for uncertainty estimation. This parity is achieved
without the additional overhead of retraining or an expen-
sive memory footprint. Furthermore, the theoretical connec-
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tion of MC-Dropout with the deep Gaussian processes [4]
makes it an ideal candidate for deep uncertainty estimation.

8 CONCLUSION

This work presents a detailed comparative analysis of two
deep uncertainty estimation techniques: (1) MC-Dropout
and (2) Ensemble method. We propose a new interactive
visual analytics tool to compare both methods’ prediction
uncertainty, error, and model sensitivity. The uncertainty
estimation capabilities enrich the usability and credibility
of the models, making them more interpretable. By per-
forming a detailed evaluation of these methods, we reveal
insights into such techniques when applied to deep volume-
rendered image-synthesizing models. In the future, we plan
to study uncertainty for other salient rendering parameters
and explore other deep uncertainty estimation techniques.
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