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Distribution Driven Extraction and Tracking of Features for

Time-varying Data Analysis

Soumya Dutta and Han-Wei Shen

Abstract—Effective analysis of features in time-varying data is essential in numerous scientific applications. Feature extraction
and tracking are two important tasks scientists rely upon to get insights about the dynamic nature of the large scale time-varying
data. However, often the complexity of the scientific phenomena only allows scientists to vaguely define their feature of interest.
Furthermore, such features can have varying motion patterns and dynamic evolution over time. As a result, automatic extraction
and tracking of features becomes a non-trivial task. In this work, we investigate these issues and propose a distribution driven
approach which allows us to construct novel algorithms for reliable feature extraction and tracking with high confidence in the absence
of accurate feature definition. We exploit two key properties of an object, motion and similarity to the target feature, and fuse the
information gained from them to generate a robust feature-aware classification field at every time step. Tracking of features is done
using such classified fields which enhances the accuracy and robustness of the proposed algorithm. The efficacy of our method is
demonstrated by successfully applying it on several scientific data sets containing a wide range of dynamic time-varying features.

Index Terms—Gaussian mixture model (GMM), Incremental learning, Feature extraction and tracking, Time-varying data analysis

1 INTRODUCTION

In the era of big data analytics, effective exploration of time-varying
data poses a significant challenge to the data scientists. Since experts
from diverse fields are interested in a wide range of phenomena, de-
fined as features, efficient detection and tracking of such features is
an essential task in temporal data understanding. A key component in
such analysis is the ability to accurately classify the large scale data
based on the expert’s interest. A visual exploration with a focus on
the relevant data allows domain scientists to quickly make crucial de-
cisions about the important scientific problems.

However, owing to the ever increasing complexity of scientific phe-
nomena, precise definition of a feature (i.e. the region of interest) is
often unavailable. Features such as the eye of a storm system, cir-
culating vortex cores in a flow field, rapidly propagating earthquake
shock-waves are hard to be separated by specific threshold values [2].
Therefore, the tracking algorithms which rely upon predetermined fea-
ture descriptors, are not readily applicable in these scenarios. Scien-
tists need visualization systems where they can directly interact with
the data and locate the feature of interest based on the initial vague hy-
potheses. But, repeating this process manually for a large time-varying
data is tedious and impractical.

Majority of the tracking algorithms proposed in the past [5, 16,
24, 29, 30, 34, 35, 43, 44] have a general assumption that the defi-
nition of the feature is predetermined and hence the feature extraction
process is deterministic. Therefore, given only a fuzzy feature de-
scription, automatic detection and tracking of such regions requires
novel algorithmic approaches. A key requirement of such algorithms
to be considered as practical is to have the ability to quickly adapt
to a refined/new feature description without going through the entire
raw data again. Also the scientific data contains features which can un-
dergo rapid changes over both space and time and usually do not main-
tain any specific structure. Therefore, tracking such a region requires
robust techniques which can efficiently capture its dynamic nature and
be able to detect it in consequent time steps.

In the absence of precise target definition, use of statistical the-
ory based approaches have shown promising results in the recent past
[4, 14]. Analysis using probability distributions has become an emerg-
ing trend and numerous visualization problems have benefited from
such stochastic approaches [11, 17, 21]. In this work, we use proba-

• Soumya Dutta is with the GRAVITY group, The Ohio State University.

E-mail: dutta.33@osu.edu.

• Han-Wei Shen is with the GRAVITY group, The Ohio State University.

E-mail: hwshen@cse.ohio-state.edu

bility distribution functions as a measure of feature definition given a
user highlighted region in the data. Since features in scientific data sets
demonstrate properties like deformation and non-rigidity, use of distri-
butions to represent such features adds great flexibility in our tracking
algorithm. We exploit both temporal and spatial coherency of data to
build a novel distribution driven feature tracking algorithm. The key
observation here is that a tracking algorithm needs to account for the
two key types of information:

1. possibility of the presence of motion at a specific region which
might indicate existence of a potential feature.

2. possibility of the existence of the feature at a specific region
given a signature of the target feature.

Here, the term possibility reflects the degree of belief of certain event.
Note that the motion information can be inferred by modeling the tem-
poral dynamics of the data, while estimating the second possibility
measure requires classification of data domain into spatially coherent
regions that match the target definition. While none of these informa-
tion mentioned above independently can give accurate results, a com-
bination of them however yields an algorithm which works well for the
extraction and tracking of features without a precise feature definition.

In order to efficiently capture the temporal dynamics, the proposed
algorithm divides the data into blocks and employs an incremental
learning scheme for modeling the continuous time-varying distribu-
tions of data at each block in the form of Gaussian Mixture Models
(GMM) [31, 36]. We estimate both the feature’s location and its mo-
tion using distributions and classify the data domain into a feature-
aware space. To measure the existence of a moving object through
a local region, we employ a foreground estimation algorithm which
helps us to quantify the first possibility measure stated above. Given
a target region of interest, we model it as a GMM and then estimate
the possibility of each data block containing the target which allows us
to compute the second possibility measure. Finally they are combined
to generate a feature-aware classification field where high possibility
valued regions are representative of the feature’s location. Applying
a threshold on the possibility values based on user’s requirement, we
are able to segment the classification field and focus on the feature.
Tracking fuzzy features using the classification fields enhances the ro-
bustness of our algorithm since such fields inherently encapsulate the
spatiotemporal data dynamics and allow us to analyze the feature prob-
abilistically. Therefore our contributions in this work are threefold:

1. We take advantage of the incremental learning scheme of GMMs
for modeling efficient and compact temporal data distributions
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Figure 1: A schematic diagram of the proposed method.

and employ a foreground modeling to detect the existence of mo-
tion in spatial domain.

2. We propose a new algorithm which models features as a GMM
and reconstructs a feature-aware classification field where the re-
gions with high possibility values highlight the target feature.

3. Finally, we present a tracking algorithm using the classification
fields and visualize the evolution of time-varying features using
volume visualization techniques.

This paper is organized as follows: In Section 2 we present a com-
parative discussion of the related research works to the topic of this
paper. A brief overview of our system is provided in Section 3. Sec-
tion 4 presents our data modeling scheme and in Section 5 and Section
6 the proposed algorithm is described in detail. We show the results
obtained by our method in Section 7 followed by parameter study in
Section 8 and a discussion in Section 9. We conclude our work in
Section 10 by highlighting several possible future directions.

2 RELATED WORKS

Distributions in visualization. Use of probability distribution func-
tions to deal with scientific problems in visualization has become a
promising approach. For answering arbitrary range distributions from
the data, Chaudhuri et al. [4] proposed an integral distribution based
method. For analyzing local statistical properties of the data Lee et
al. [19] used integral distributions with discrete wavelet transfor-
mation. To leverage the performance of query driven visualization,
Gosink et al. [11] used distribution functions effectively. Jhonson
and Huang [17] allowed querying on distributions for enhancing sci-
entific data understanding. Local histograms were used for designing
efficient transfer functions for scientific data sets [21]. For compact
data representations and data classification mixture of Gaussians have
gained popularity in recent years. A Gaussian mixture model based
volume visualization was proposed in [20]. GMMs were also used for
probabilistic transfer function designing [23]. A block-wise approach
was taken by Gu and Wang for a hierarchical graph based analysis
of time-varying data [12]. For coherent transfer function design for
time-varying data, incremental Gaussian mixtures were also used in
[42].

Feature extraction and tracking in visualization. Feature extrac-
tion and tracking is an important problem for scientific data visual-
ization and has been explored in the past. For tracking volumetric
features in scientific data Samataney et al. [29] proposed a correspon-
dence based approach. By exploiting volume overlapping, Silver and
wang [34] tracked volume features with high accuracy as well. Ji and
Shen used earth mover’s distance to design a globally optimum fea-
ture tracking algorithm [16]. In another work, Ji et al. used higher
dimensional isosurfaces for tracking volume features [15]. For track-
ing features in distributed AMR data sets, Chen et al. used feature
tree as a visualization representation of tracked features [5]. Tzeng
and Ma [39] proposed a machine learning approach for automatically
learning and tracking features in large scale simulation data. Ozer et
al. recently proposed techniques for tracking a group dynamic features
together as a collection, where the problem of tracking was modeled
as activities in scientific data [24, 25]. Using a predictor-corrector
method, Muelder and Ma introduced a new algorithm for efficient fea-
ture tracking [22]. To quantify goodness in feature correspondence,

Reinder et al. introduced an attribute-based feature tracking algorithm
for scientific data sets [28]. In a recent work, Sauer et al. utilized par-
ticle information for enhanced feature extraction and tracking in joint
particle/volume data sets [30]. Their method allowed to track features
in data sets when sufficiently dense temporal sampling is not available.
A TAC based distance field was used effectively in the works of Lee
and Shen for analyzing time-varying features [18]. Theisel and Seidel
proposed a method for tracking features like saddle, source, and sinks
in time-varying vector field directly using streamlines [37]. Garth et
al. in another work presented techniques for tracking vector field sin-
gularities [10]. A survey of feature tracking algorithms also can be
found in [27] by Post et al.

In this work, we extend the capability of feature tracking algorithms
by proposing a new distribution driven technique which enhances the
feature extraction part when precise feature definition can not be ob-
tained. Below we present a short overview of our algorithm before
going into the details.

3 METHOD OVERVIEW

Our high level goal in this work is to devise an efficient algorithm
capable of tracking features in large scale data when precise feature
definitions are not available. We use mixture of Gaussians (GMMs)
to model the feature and employ a distribution driven technique for
extraction and tracking of such features. We model the data block-
wise and store distributions in form of GMMs for each block. Fig-
ure 1 presents a schematic diagram of the proposed system. Initially,
given a region in the data as the feature of interest, we construct the
feature GMM using the data from the selected region. We also con-
struct distributions for all the blocks of data by incrementally learning
the parameters of the GMMs and quantify the possible existence of a
moving object in a block by adapting a foreground estimation algo-
rithm. Next, we compute the chance of a block being part of the fea-
ture by comparing the distribution of the block with the feature GMM
directly by exploiting the spatial coherency of the data. To measure
the final possibility of the block as a part of the feature, we combine
the two types of estimated information to construct a feature-aware
classification field where high valued regions highlight user interested
features. Finally, we demonstrate an automatic tracking technique us-
ing classification fields and explore the evolution of tracked features
by interactive volume visualization techniques.

4 STOCHASTIC DATA MODELING AND INCREMENTAL ESTIMA-
TION OF MOTION INFORMATION

In this section, we introduce the details regarding the initial feature se-
lection technique and modeling of temporal data distributions. Since
the size of time-varying data can be very large, we aim at a compact
representation of distributions with a fast computation time and small
memory footprint. This allows us to accelerate the tracking while
users refine or specify new features since we only need to access the
already computed summarized data without touching the entire raw
data. Popular distribution estimator histogram computes the distribu-
tions quickly, but its storage requirement makes it unsuitable for our
work. Another non-parametric estimator Kernel Density Estimation
also requires high storage and this method is computationally expen-
sive. So, to meet the requirements in our work, mixture of Gaussians
(GMM) presents a suitable choice for modeling distributions. Use of
GMMs [1] is well known for data classification [20, 23, 42]. Since
multiple Gaussians are used to model the data, no assumptions about
the underlying data distribution are made [38]. Furthermore, based
on the Gaussian properties, GMMs allow efficient computation by di-
rectly using the mixture components [38]. Below we first describe how
the experts select their region of interest and then formally present the
proposed distribution driven model in detail.

4.1 Interactive Feature Selection

Since scientists may not always have a precise definition of the feature,
we allow them to pick their region of interest directly in the volume
space from an initial time step. Scientists can explore the data and
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based on their experience and knowledge, they highlight a region in-
teractively, where they hypothesize the feature of interest exists. In
this way, they are not required to define a hard threshold for the fea-
ture which otherwise is a difficult task for complex scientific features.
In a previous work, selection of relevant data directly from volume
space has shown to be effective over selection in histogram domain
[23]. A selected region provides us the sample points which allow us
to model the region as a GMM. Representing the feature using a mix-
ture of Gaussians provides us a basis for quantifying the vagueness in
feature definition to a statistically meaningful representation. Model-
ing features as a distribution is not new and scientists have used this
approach in the past [7, 9, 21]. In fact, since the features in the scien-
tific data is usually non-rigid objects, often without any definite shape,
modeling them using distribution presents a suitable choice [9].

4.2 Incremental Gaussian Mixture Model for Distribution
Estimation of Time-varying Data

In this work, we aim to exploit the inherent spatiotemporal coherency
of time-varying data to achieve increased accuracy and robustness in
our algorithm. Keeping the large size of time-varying data in mind,
a block-wise partition of data for analysis is adapted. The whole
data space is partitioned into smaller non-overlapping blocks. Such a
block-wise approach is widely employed in computer vision and video
processing applications for exploiting the spatial coherency in data at
a reduced computational complexity. Also it was previously shown
that, for scientific data sets, a block-wise approach is more suitable
than a voxel-wise approach when the data size becomes large [41].
Furthermore, for capturing the temporal coherency in data modeling,
we advocate for an incremental scheme for estimating temporal data
distributions. Formally, the probability density p(X) of a GMM for a
random variable X is expressed as:

p(X) =
K

∑
i=1

ωi ∗N (X |µi,σi) (1)

where K is the number of Gaussian components. ωi, µi and, σi are

the weight, mean, and standard deviation for the ith Gaussian com-
ponent respectively. It is to be noted that the sum of weights in the
mixture, ∑K

i=1 ωi is always equal to 1. Computation of parameters
for the GMMs is typically done by Expectation Maximization (EM)
which uses an iterative approach to maximize a likelihood function
[1]. However, since we want to model the temporal dynamics of the
data, an incremental learning scheme is preferred, which leads to sta-
ble distribution estimation for time-varying data [31, 36]. Use of an
incremental modeling not only makes our computation faster, but also
permits us to adapt a foreground estimation model which is built using
the incremental GMM. Next, we present the details of the incremental
update scheme for GMMs.

Incremental update scheme for GMMs. We employ an incre-
mental update method presented in [36] for estimating the parameters
of the GMMs for each block of data over time. Since scientific data
generally presents temporal coherency, modeling data distribution us-
ing an incremental algorithm yields promising results as was reported
in [42]. Such a modeling in turn increases the efficacy of the track-
ing algorithm because it is able to preserve the temporal coherence in
the estimated GMMs between consecutive time steps. For the initial
estimation of the parameters, we apply the off-line EM algorithm per
block for the first time step only. Then, from the next time step on-
wards, we update the parameters of the GMMs incrementally for each
block as we observe new data.

For each block, every new data point is checked against the existing
K Gaussians. A positive match is found if a data point lies within the
2.5 standard deviation of a Gaussian. If multiple matches are found,
then the best matched Gaussian is selected, which is the Gaussian with
the minimum matched value. If none of the K Gaussians match the
current data value, then the least probable distribution in the model is
replaced with a new Gaussian with the current data value as the mean,
an initial high standard deviation, and a low weight. The weights at

Figure 2: Evolution of the GMM of a block while an object moves
through it.

time t for the ith mixture are adjusted as:

ωi,t = (1−β )ωi,t−1 +β (Ii,t), i ∈ {1,2...K} (2)

β is called the learning rate and the value of Ii,t is 1 for the distribu-
tion with the best match and 0 otherwise. After the adjustment, all
the weights are normalized again for maintaining consistency. The µ
and σ parameters for the unmatched distributions remain the same,
however for the matched distribution they are updated as:

µi,t = (1−β )µi,t−1 +βxi,t (3)

σ2
i,t = (1−β )σ2

i,t−1 +β (µi,t − xi,t)
2 (4)

Once we have observed all the points for a block in the current time
step, the GMM will give us the updated distribution for the current
time step. It is evident that the model adapts to the new data since it
adds or removes Gaussians from the existing model as required. While
learning the distributions for each block, we also estimate the possi-
bility of each block having a moving object in it. For measuring such
possibility, we manipulate the distributions learned by the incremental
GMM and employ a foreground estimate to extract the desired infor-
mation as described below.

4.3 Estimation of Moving Features Using Foreground De-
tection

In a time-varying data, if a feature has a motion, then by exploiting
such motion information, the location of the feature can be identi-
fied efficiently. If the moving feature enters a block which was not
present there in the previous time step, the block will encounter new
data points which will result in a creation of new GMMs during the
distribution estimation. If the new data points change the block’s dis-
tribution significantly compared to its previous state, then such blocks
can be characterized as containing the moving feature in the current
time step. Identifying those blocks will give us the feature’s possible
location in space.

Data blocks containing such moving feature are often interpreted
as the foreground region in the time-varying data, which demonstrate
distinguishable properties compared to the relatively static background
region. The possibility of a block being part of the foreground can be
estimated by the amount of new data points the block has encoun-
tered in the current time step. If majority of the points are new, then
the block should be classified as a foreground with high confidence.
Since, we model the temporal distribution of the data using an incre-
mental update scheme, at any given instant, the GMMs at each block
represent a temporal distribution of the block created using the data
observed in earlier time steps. The Gaussians with higher weights in
the block GMM are the representative of the portion of the data which
the block has encountered consistently in the past and the high weights
reflect that. Therefore, when a new data point comes, it will not find a
match with any of such Gaussians and will add a new Gaussian in the
model. We aim to identify those new data points and by doing so we
can quantify the possibility of the block being part of the foreground.
While observing new data points during the distribution estimation,
we keep track of all the data points that: (1) do not match any exist-
ing Gaussians with weight higher than a threshold T , and (2) matches
with a newly created Gaussian. All such points represent the new data
points that the block has observed in the current time step. As the
number of such points increase, the chance of that block of being a
foreground also increases. So, the possibility that a block containing a
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foreground object is quantified by the fraction of the new data points
to the total number of observations in the block:

POS f oreground,t(bi,t) = qi,t/ni,t (5)

where qi,t is the number of observations that satisfies either the clause
(1) or (2) stated above, and ni,t is the total number of observations for

the ith block at time t. The value of POS f oreground,t(bi,t) is always be-
tween 0 and 1, where POS f oreground,t(bi,t) = 1 signifies no data points
in current time step matched any existing Gaussians and thus chance of
the block being a foreground is maximized. As we iterate over all the
time steps, we measure this possibility value for each block per time
step and keep this information. Later we will use this information and
combine it with another possibility measure for the final classification
of each block as being part of a feature of interest.

In Figure 2 we show the conceptual evolution of a GMM of a block
over a sequence of time steps as an object moves through it. At time
t0 the block is considered as a part of the background. However, as
the object enters the block at time t1, the distribution changes and the
possibility value of this block being a foreground increases. From t1
- t3 the block shows evidence of being a part of a foreground object
and finally when the object exits the block, the GMM returns back to
its old shape, as can be seen at time t4.

For each time step, we store the estimated parameters of the GMM
and also a possibility value for each block measured by Equation 5.
Observe that the estimation of the possibility value presented in this
section is oblivious to the feature. But this provides us a way to mea-
sure the chance of a block being part of a moving object which can be a
potential feature. In the next section, we introduce another possibility
measure for a block being part of a feature when we observe the fea-
ture distribution. Finally, we show how the two possibility values are
combined to construct a feature-aware classification field where the
regions with high possibility values indicate the existence of features.

5 FEATURE-AWARE CLASSIFICATION FIELDS

Previous section introduces a measure for each data block which gives
the information regarding the chance of existence of a moving object
in a block. For any robust feature extraction and tracking system, de-
tection of motion component is essential for improving the tracking
results [26]. However, since this information does not consider the
target feature definition, the extracted regions may require further re-
finement based on user’s need. Also, if the feature does not have a
strong motion component then we can not make any definitive conclu-
sion about the feature from only foreground information. To remedy
this, we introduce another measure which estimates the possibility of a
block being part of a feature by observing the feature distribution and
helps us to finally classify the blocks.

5.1 Classification Based on Feature Similarity

Our goal is to measure the possibility of each block being a part of
the target feature. This possibility measure exploits the spatial co-
herency and extracts the regions which contain similar distributions
as the target GMM. We measure the similarity between the GMM
of each block and the feature GMM. There are several techniques
available for measuring the similarity between two GMMs such as
the Kullback-Liebler divergence (SKL) and, Bhattacharyya-based dis-
tance measures [33, 45]. However, SKL does not have a closed form
solution and needs Monte-Carlo approximation which makes it com-
putationally expensive. Also it was reported that the Bhattacharyya-
based similarity measure is generally fast and leads to good results
[33]. So, for measuring the similarity between GMMs, we have used
the Bhattacharyya-based distance measure which can be expressed as:

Ψ(p, p′) =
n

∑
i=1

m

∑
j=1

ωiω
′
jB(pi, p′j) (6)

where p and p′ are the GMMs and n and m are the number of mixture
components of GMM p and p′ respectively. B is the Bhattacharyya

distance between two Gaussian kernels and is defined as:

B(p, p′)=
1

8
(µ−µ ′)T

(

Σ+Σ′

2

)−1

(µ−µ ′)T +
1

2
ln

[

|Σ+Σ′

2 |
√

|Σ||Σ′|

]

(7)

here µ , µ ′ and Σ, Σ′ are the mean and covariance of the Gaussian
kernels p, p′ respectively. After computing the values of Ψ(·) for all
the blocks, the values are normalized. Given the feature GMM ft at
time t, the possibility of ith block bi,t being part of the feature at time
t is computed as:

POSsimilarity,t(bi,t) = 1−Ψnorm(bi,t , ft) (8)

Note that the value of POSsimilarity,t(bi,t) is always between 0 and
1 and is maximum for the block which matched best with the fea-
ture GMM ft and as the degree of match reduces i.e. the similar-
ity between feature GMM and block GMM decreases, the value of
POSsimilarity,t(bi,t) also drops.

So far, we have described two types of possibility values for each
block and each of them tries to classify a block of being part of a
feature. In the following, we demonstrate how these two information
are combined effectively to obtain a more accurate classification of all
the blocks instead of using them individually.

5.2 Construction of Feature-Aware Classification Fields
by Combining Multiple Possibility Values

In this section, we present the method for combining the possibility
values discussed in earlier sections to achieve a final robust classifi-
cation of all the data blocks. Such a classification will assign higher
values to the blocks which are more probable of being part of the tar-
get feature. Note that the possibility values defined earlier, tries to
analyze the block from different perspectives. For the first method,
high value of POS f oreground,t(bi,t) for a block signifies that there is a
high chance of existence of a feature in that block. However, since
it does not directly consider the target feature definition, we can not
come to a certain conclusion by just using this measure. To comple-
ment this deficiency, we have incorporated another possibility measure
POSsimilarity,t(bi,t) which calculates the possibility by taking into ac-
count the similarity between a block GMM and the user interested
feature GMM. However, when the feature distribution is not clearly
separable from the background or the feature size is sufficiently small,
performance of this approach deteriorates. So, we can not always
completely rely on the similarity based measure for the classification.
Therefore, we seek a consensus between the two measures to classify
all the data blocks with high confidence.

In statistical theory, there exists several techniques for combining
multiple hypotheses for inference. In our case, we have two hypothe-
ses (possibilities of being a feature) and they can be combined either
linearly or non-linearly. A popular and effective technique for linear
combination of hypotheses is presented in [6], called the linear opin-
ion pool. This technique is fast to compute and suitable for interactive
algorithms such as ours. Hence, following this strategy, the two possi-
bility values are combined as:

POS f eature(bi) = γ ∗POSsimilarity(bi)+(1− γ)∗POS f oreground(bi)
(9)

Here γ acts as the mixing parameter which plays an important role.
The value of γ always chosen between 0 and 1 which determines how
much contribution each of the possibility measures will have in the fi-
nal classification. Based on the knowledge of experts, this parameter
can be selected carefully to enhance the robustness of classification.
If a data set contains a moving feature and scientists are interested in
tracking such feature then the value of γ is chosen accordingly such
that the contribution of POS f oreground(bi) is more in the classifica-
tion and similarly if the target feature does not show a strong move-
ment over space, we can set a high γ values to increase contribution
of POSsimilarity(bi). In the absence of specific knowledge about the
feature dynamics, we can set γ = 0.5, which accounts for the equal
contribution of both the measures in final classification. Once all the
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(a) Lambda2 field

with target feature.

(b) Similarity mea-

sure of vortex feature.

(c) Foregorund possi-

bility of the feature.

(d) Classified field.

Figure 3: Feature estimation exploiting spatial and temporal coherency
using hurricane Isabel data at T=34.

Algorithm 1 Construct Feature-Aware Classification Field

1: Input: GMM( f eature), timestep

2: for all block bi do

3: Compute POSsimilarity(bi). (Equation 8)

4: Compute POS f eature(bi). (Equation 9)

5: Use POS f eature(bi) for construction of classification field.

6: end for

data blocks are classified and a possibility value is assigned to them,
a scalar field can be constructed using the possibility values for all the
points in the block. Such a field is called the feature-aware classifica-
tion field and Algorithm 1 presents the pseudo code for constructing
such field. Direct visualization of such a field can convey the informa-
tion regarding the likelihood of the feature’s existence at current time
step. Note that this field is generated by combining the two possibil-
ity measures which are derived directly by exploiting the spatial and
temporal coherency of the time-varying data. In the absence of a pre-
cise feature definition, such a classification field allows scientists to
observe the evolution of the features in a time-varying data.

Figure 3 demonstrates the usefulness of having two key possibility
measures, used in this work and shows why just a single measure is not
sufficient. In Figure 3a the λ2 field of hurricane Isabel data is shown
for time step 34 where the vortex region and its spread is highlighted.
Initially, the target feature is specified as shown in Figure 10 in time
step 1. Figure 3b depicts the POSsimilarity(bi) field where it is clearly
visible that the vortex core is identified only and the smaller band of
vortices are mostly missing, or identified with low confidence. How-
ever, in Figure 3c we see the POS f oreground(bi) field which captures the
smaller bands of vortices with higher accuracy, but the detected core
region is not as accurate as in Figure 3b. Finally, Figure 3d presents the
combined feature-aware classification field which is able to preserve
both the core and the small vortex bands with high accuracy. This
means that tracking using classification fields will yield robust results
since it is able to capture the target feature in detail.

For any tracking algorithm, the accuracy of extraction of features
is an important step. If the extracted features are not reliable then
the tracking may not give a meaningful result to the scientists. Since
we are dealing with an uncertain feature definition, the proposed tech-
nique solves an important problem in automatically detecting the fea-
ture evolution over time. In the next section we present a technique for
tracking features using the feature-aware classification fields.

6 TRACKING USING FEATURE-AWARE CLASSIFICATION

FIELDS

Feature tracking in visualization is an important task and researchers
have looked into this problem in the past [16, 24, 29, 30, 34, 35, 43].
Even though above techniques achieve stable tracking results, the fea-
ture extraction part of those methods rely on the precise feature de-
scription. In this work, we extend the capability of the feature tracking
techniques by introducing a new distribution driven method, which is
able to track volume features that are selected directly from raw data
interactively, therefore without any precise description. We have used
GMM of the selected region to model the target feature. To make the
feature extraction more accurate and robust, we first transform the data
into a feature-aware classification field as described in the earlier sec-
tion. Such a field allows us to classify the data by their relevance to

the user interested feature. In the classification field, regions with high
possibility values represent the existence of the feature of interest and
they can be easily visualized and explored. We perform tracking in
this feature-aware space because the classification field allows to eas-
ily extract the feature by applying a suitable user specified threshold
on the possibility values. Below we discuss the method in detail.

Algorithm 2 Tracking In Feature-Aware Classification Field

1: Input: GMM(bi), GMM( f eature) : ∀i ∈ 1,2, ..n

2: Initialize ftarget := GMM( f eature)

3: for all t in T do

4: Generate Feature-Aware Classification Field(GMM( f eature) , t) (Algorithm 1)

5: Thresholding (>= possth) on the Classification field.

6: Apply connected component algorithm on the thresholded results.

7: Compute distance between centers of target feature and all the detected regions

from the current time step.

8: Find the best match l with the minimum distance to the target feature ftarget .

9: Set ftarget := l

10: end for

A visual inspection of the classification field using interactive vol-
ume visualization techniques allows scientists to easily locate their
feature of interest by focusing on the high valued regions in the field.
Our method allows the users to inspect the classified field of an initial
time step and provide a suitable threshold possibility value (possth),
which we apply to the classification fields of later time steps for au-
tomatic extraction of the target feature. After the threshold (possth)
is applied to the classification fields, a connected component based re-
gion growing algorithm is employed to the result of the thresholding to
extract all the connected features. Each such detected region is treated
as a separate feature. A match with the given target feature is found by
using a distance based method as was described earlier in [29], where
the Euclidean distances between the centers of the target feature ftarget

at time t with all the other detected regions at time t +1 are computed
and the region with the minimum distance is tagged as the target fea-
ture ftarget in time t +1. This process is repeated for consecutive time
steps to continue the tracking process. Algorithm 2 sums up the steps
of our tracking algorithm which implicitly calls Algorithm 1 for gen-
erating the classification fields for each time step and tracks the feature
of interest using it. In Algorithm 2, T represents the final time step.
As can be seen, at the end of calculation of every time step, the ftarget

is updated with the best matched feature l from the current time step
which is used in the next time step as the reference feature.

In some complex scenarios, apart from changing the position and
size, the target feature may undergo several evolutionary events such
as birth, split, merge, and dissipation etc. Unlike traditional automatic
feature tracking systems where all the existing features are extracted
based on a predefined feature definition and tracked over time, we are
more concerned with tracking a specific region of interest which has
been identified vaguely from a region directly specified from the raw
data. Therefore, we do not require to focus on a feature birth pro-
cess explicitly. To detect the dissipation of a feature, we set an upper
limit to the matched minimum distance value. The motivation is that
given sufficient temporal resolution, the evolutionary change of a time-
varying feature happens gradually and if a sudden anomaly is detected
during the tracking in terms of the matched minimum distance, the
event needs further attention of experts. Therefore, during tracking,
we compare the value of the matched distance at each time step with
the predefined upper limit and if the value is greater than the limit, we
finish tracking and report the time step back to the user for further in-
vestigation. Events like feature split or merge can be detected in our
system by keeping track of the feature mass. In our tracking algorithm,
we measure the mass of the identified feature as was described in [29]
at each time step and compare it with the previous time step. A sudden
and large change of mass indicates a potential feature split or merge
event, where increase in mass indicates feature merge and decrease in
mass signifies feature split. Even though a big drop in the mass may
also reflect a shrinking/disappearing event, however, by keeping track
of such event, our system is able to detect those time steps and they
are reported back to the users for further investigation. The proposed
method allows users to set a predefined threshold value based on their
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Figure 4: Matched distance values over time for Tornado data set.

(a) Selected feature in the Tornado data set and

a zoomed in view of the selected region.

(b) Temporal trace volume of

the tracked feature.

Figure 5: Feature tracking in Tornado data set.

domain knowledge for the change of mass between two consecutive
time steps and if a change of more than the threshold is detected, the
time step is marked and is reported back for further exploration. In
Figure 4, we show one example plot of the minimum matched dis-
tance values for all the time steps for the Tornado data set. The upper
limit to the matched distance was set to 15 for this experiment. As
we can see that, for all the time steps the proposed method was able
to extract and track the target feature with high consistency which is
reflected by the low matched distance values throughout all the time
steps.

7 RESULTS

In this section we demonstrate the effectiveness of the proposed
method in extracting and tracking features with fuzzy definition, us-
ing several scientific data sets. All the experiments were done on a
Linux machine with an Intel core i7-2600 CPU, 16 GB of RAM and
an NVIDIA Geforce GTX 660 GPU with 2GB texture memory. In
all the case studies, using a maximum of 3 Gaussians produce stable
results and so the maximum number of Gaussians per GMM is set to
3 for the experimentation.

7.1 Case Study 1: Tornado Data Set

The first experiment is to study a Tornado data set of dimension
128× 128× 128, containing velocity vectors at each grid point, gen-
erated by an analytical function [8]. The data set has 50 time steps
and simulates a tornado like vortex structure. For this case study, we
have modified the analytical equation so that the center of the tornado
changes position with time. The block size of 4X4X4 is used for the
experimentation. The goal is to track the vortex core of the tornado.
Figure 5a presents the selection of the fuzzy vortex region from the

first time step of the data. We have computed the lambda2 (λ2) vor-
tex criterion using the velocity field for measuring vortexness at each
spatial point. Even though theoretically negative values of λ2 criterion

(a) T=10. (b) T=20. (c) T=30. (d) T=49.

Figure 6: Extraction and tracking in Tornado data set. The vortex core
is tracked over time and the results of 4 selected time steps are shown.

(a) Selected feature. (b) T=25. (c) T=35. (d) T=40.

Figure 7: Extraction and tracking of the selected feature in 3D Flow
around a cylinder data set. High velocity feature at 3 selected time
steps have been shown.

represent vortex region, deciding a precise threshold using a λ2 value
is difficult and often needs manual tuning. Nevertheless, visualizing
the lambda2 field allows experts to mark the region in the data where
the vortex exists. From the highlighted region, we extract all the points
and fit a GMM on those data points to represent the region (feature of
interest) using its distribution. After that, the proposed extraction and
tracking method is applied on all the other time steps of the data for
automatically extracting and tracking the vortex region.

Figure 6a, 6b, 6c, and 6d depict the tracked feature of interest at
4 time steps. Even though we have estimated the feature distribution
by only using the sample points from the initial highlighted region as
shown in Figure 5a, our extraction algorithm is able to recover the
complete connected vortex core region from the data accurately. For
the construction of feature-aware classification fields, the value of γ
is set to 0.5 which means the final classification will have 50% con-
tribution from the foreground component (the motion component) and
rest of the 50% contribution comes from the similarity based measure.
In this work, we perform tracking in the classified fields, and focus
on the high valued regions. For extracting the target region which
strongly represents the feature of interest, regions with a possibility
value higher than 0.65 are considered in this study. The results reflect
that our method is able to extract and track automatically the feature
over time. A short demo video of the tracking of the tornado feature
is provided which demonstrates that our technique is able to track the
feature consistently over time with high accuracy.

To provide a comprehensive view of the tracked feature, we also
create a temporal trace of the feature by constructing a scalar volume
using time steps as the scalar value at each grid point. At the end
of tracking, the temporal trace volume is obtained which shows the
dynamic transition of the tracked feature over space. In Figure 5b
we show such a feature trace volume of the Tornado data set. The
movement of the tracked feature from left to right is evident from the
gradual transition of color. When the feature have a continuous mo-
tion, then the trace volume allows the experts to visualize the overall
temporal evolution of the feature efficiently.

7.2 Case Study 2: 3D Flow around a cylinder data Set

This case study demonstrates feature extraction and tracking in the
3D Flow around a cylinder data Set. This is a 3D time-dependent in-
compressible flow data with a Reynolds number of 200 and a square
cylinder has been positioned symmetrically between the two parallel
walls. The data set consists of velocity vectors and simulates a com-
plex periodic vortex shedding phenomena which is well known as the
von Kármán vortex street. This is a direct numerical Navier Stokes
simulation by Simone Camarri and Maria-Vittoria Salvetti, Marcelo
Buffoni, and Angelo Iollo [3] which is made publicly available [13].
We have used a uniformly re-sampled version which has been pro-
vided by Tino Weinkauf and used in von Funck et al. [40]. The data
is represented by a grid of 192× 64× 48 and there are total 102 time
steps. For experimentation, 4X4X4 block size is used.

In order to explore the periodic flow pattern and the vortex shed-
ding which are produced by the von Kármán vortex street, study of the
velocity field is useful. The high velocity waves show the periodic pat-
terns exist in the data and help scientists to understand the phenomena
in greater detail. For tracking the rapidly moving high velocity vortex
street, we have used velocity magnitude field in this case study.
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Figure 8: Selected feature in Earthquake data set and a zoomed in view
of the selected region.

In Figure 7a, the region with high velocity magnitude is selected as
the region of interest which moves periodically through the simulation
grid. Tracking of such region is non-trivial as the feature is hard to
define by a hard threshold value. Furthermore, isolation of such fea-
ture consistently over the time range poses significant challenges. We
have applied our extraction and tracking algorithm in this data set and
Figure 7 demonstrates the results we have obtained. In Figure 7b, 7c,
and 7d we show the tracked feature which moves forward over time.
For creating the classification fields, the value of γ is set to 0.7 which
means that the foreground measure contributes more than the similar-
ity measure in this experiment and for isolating the feature, we have
used possibility value larger than 0.8. From the results depicted in Fig-
ure 7, it is evident that the proposed method is able to isolate and track
the selected feature over time effectively.

7.3 Case Study 3: Earthquake Data Set

Our next case study uses an Earthquake data set which is a time-
varying data consisting of wave velocity vectors. The dimensions of
the 3D volume data is 750× 375× 100 and we have used 100 time
steps to perform the experiment. The data set describes a simulation
of earthquake of magnitude 7.7 on the Southern San Andreas Fault
and was generated using TeraShake 2.1. The TeraShake 2.1 simu-
lation was performed by scientists at the Southern California Earth-
quake Center (SCEC) and researchers at San Diego Supercomputer
Center (SDSC). It records the velocity vectors of the earthquake waves
spreading over time. For this case study, we have considered the mag-

(a) T=10. (b) T=20. (c) T=30.

Figure 9: Extraction and tracking of the propagation of high velocity
shock waves in Earthquake data set. Results of 3 selected time steps
are presented.

nitude of the velocity field since studying the high velocity waves, the
direction and intensity of the earthquake can be understood in detail.
The data is divided into blocks of 5X5X10 for experimentation. In
Figure 8, the region with high velocity magnitude is selected as the
region of interest. Figure 9 depicts the result of tracking such high ve-
locity region over the selected time range. In Figure 9a, 9b, and 9c we
present the tracked target region at 3 selected time steps 10, 20, and 30
respectively. The images show how the high velocity waves propagate
over time. We also visualize the land and the basin regions with the
feature to reflect the areas effected by the strong wave. While creating
the feature-aware classification fields, value of γ is set to 0.3 and in
tracking phase, we have considered possibility values higher than 0.72
for isolating the feature of interest at each time step. Results presented
in Figure 9 show that the proposed method is able to detect and track
the strong wave front feature.

7.4 Case Study 4: Hurricane Isabel Data Set

Next, we present the fourth case study using Hurricane Isabel data
which is a time-varying data set containing a vector field of wind ve-
locity. The data set is a courtesy of NCAR and the U.S. National

(a) Feature selection in Hurricane Isabel data. (b) Estimated GMM of the feature.

Figure 10: Selected feature in Hurricane Isabel data set, a zoomed in
view and the GMM of the selected region.

(a) T=11. (b) T=28. (c) T=41. (d) Temporal trace of

the feature.

Figure 11: Extraction and tracking of the vortex at Hurricane eye in
Isabel data set. Results of tracking of 3 selected time steps are shown.

Science Foundation (NSF), and was created using the Weather Re-
search and Forecast (WRF) model. The data set corresponds to an
actual physical space of 2139km (east-west) x 2004km (north-south)
x 19.8km (vertical), which is represented by a grid of 250×250×50
and there are total 48 time steps. For experimentation, 5X5X5 block
size is used.

An important task in this data set is to extract and track the temporal
evolution of the low pressure eye (core) of the storm system where a
strong vortical flow exists. As discussed earlier in [2], accurate track-
ing of the location and spread of the eye is critical in understanding
the strength of the storm. We have computed the lambda2 (λ2) field
using the velocity field for the initial selection of the vortex region.
Note that, the use of a hard thresholding on the λ2 value is not always
robust and often requires user intervention. Also, the dynamic nature
of the feature makes the task of tracking challenging.

In Figure 10a, the feature selection is demonstrated. It is evident
that the feature boundary is fuzzy and separating it using a hard thresh-
old is cumbersome. Figure 10b displays the GMM which is estimated
from the selected region and it is treated as the feature definition in
the proposed tracking algorithm. The tracking algorithm, described in
Algorithm 2 is applied on the entire data set over all the time steps us-
ing the estimated GMM as the feature of interest. At every step of the
Algorithm 2, it internally calls the Algorithm 1 for the construction
of the feature-aware classification field. Since the feature of interest
has a motion in the space, we use γ = 0.3 for capturing such motion
information while computing the classification fields. Final tracking
is done on the classification fields and the feature is extracted at each
time step and visualized using volume visualization techniques. In
Figure 11, the detected vortex region (the Hurricane eye) is presented
for 3 selected time steps to show effectiveness of our method. For
isolating the feature in the final classified possibility fields, possibility
value of greater than 0.55 is considered. From Figures 11a, 11b, and
11c it is evident that the proposed method is able to detect and track the
eye of the storm with high accuracy. Also in Figure 11d we show the
temporal trace volume of the feature to present the overall evolution
of the target feature.

Figure 12 shows a comparison between our method and the corre-
spondence based volume tracking method [29]. We have implemented
the volume tracking algorithm for this comparative study. Since the
volume tracking method requires a predefined precise feature descrip-
tion for tracking, we have used λ2 < −0.001 as our feature definition
in this study. Figure 12a and 12c show the results obtained from the
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(a) Feature extracted

using volume track-

ing method at T=15.

(b) Feature extracted

by the proposed

method at T=15.

(c) Feature extracted

using volume track-

ing method at T=35.

(d) Feature extracted

by the proposed

method at T=35.

Figure 12: A comparison between the volume tracking method and the
proposed algorithm. The proposed method is able to produce compa-
rable results with a fuzzy feature descriptor.

(a) Feature selection in Vortex data set with a

zoomed in view.

(b) Estimated GMM of the user in-

terested feature.

Figure 13: Selected feature in Vortex data set, a zoomed in view and
the GMM of the selected region.

volume tracking method for time steps 15 and 35 respectively, and
Figure 12b and 12d show the extracted feature for the same time steps
with the fuzzy feature description. It can be seen that the results ob-
tained by the proposed method are very similar to that of the volume
tracking method with only minor differences. It shows that the pro-
posed method is capable of extraction and tracking of features which
are only vaguely defined. Therefore, this method enhances the capa-
bility of the existing feature tracking algorithms by providing a novel
way of dealing with fuzzy volume features. Furthermore, the tempo-
ral trace volume depicted in Figure 11d also confirms that our method
is robust and can track the time-varying features with high accuracy
consistently.

7.5 Case Study 5: Vortex Data Set

Our final case study shows the result on a Vortex data set which is
a pseudo-spectral simulation of coherence vortex structures. The di-
mension of this data set is 128×128×128 and is divided into blocks
of 4X4X4. The scalar variable in the data is vorticity magnitude. We
used 30 time steps of the data set to demonstrate the effectiveness of
our algorithm on this data set. The data set contains several tubular
vortex cores which undergo rapid shape changes and complex events
such as split, merge, creation, and dissipation.

Figure 13a shows a specific region which is selected for this case
study from the first time step. Figure 13b depicts the GMM estimated
from the selection as the feature to be tracked. From Figure 13a it is
visible that there are several vortex regions in the data set and there-
fore, explicit correspondence is important in this case for accurate
tracking of the selected feature. We have applied our tracking algo-
rithm, presented earlier, for tracking the selected feature. In Figure 14

(a) T=3. (b) T=6. (c) T=14. (d) T=15.

Figure 14: Extraction and tracking using Vortex data set. Tracked
feature for 4 selected time steps are displayed.

(a) Feature extracted

using volume track-

ing method at T=3.

(b) Feature extracted

using proposed

method at T=3.

(c) Feature extracted

using volume track-

ing method at T=8.

(d) Feature extracted

using proposed

method at T=8.

Figure 15: A comparison between the volume tracking method and the
proposed algorithm using Vortex data set.

we demonstrate the results of extraction and tracking by showing the
tracked feature at 4 selected time steps. Since, the features in this data
set change their shape rapidly and the motion is not a dominant com-
ponent, the value of γ is set to 0.15, so that we take larger contribution
(85%) from the similarity based possibility measure to achieve higher
accuracy in tracking. After the feature-aware classification fields are
constructed, we use possibility value 0.58 as a threshold for identify-
ing all the connected regions in the data set. Then by applying the
Algorithm 2 we detect and track the target feature.

From the Figures 14a - 14d, it is evident that the key feature gradu-
ally dissipates as time increases. Finally, the feature dissipates at time
step 22 which is detected in our system by the predefined upper limit
set for the distance value between the matched feature and tracked fea-
ture from previous time step. A detailed visual exploration shows that
our method is able to show the feature split phenomena clearly. From
the tracked results presented in Figure 14, time steps 14− 16 are sig-
nificant because the target feature undergoes a split in this time range.
In Figure 14c we can see that the feature is about to split into two seg-
ments and the split happens in time step 15. As the split happens, we
continue to track the closest component of the feature and report the
time step where the split has happened. In our current system, time
step 15 is detected to have a potential split since in this time step mass
of the feature decreases 30.9% compared to its previous time step. A
short demo video of the tracking of the selected feature is provided as
a supplementary material which demonstrates the temporal evolution
of the feature for all the tracked time steps. Another observation here
is that, as the feature gradually shrinks in size, the possibility values
also drop. This trend is visible from the sub-figures in Figure 14 where
the higher time steps show less yellow regions on the feature and more
red regions, indicative of low possibility values.

In Figure 15 we present a comparison between the proposed method
and the volume tracking method. This data set has multiple complex
features (vortex cores) which are identified as isolated segmented re-
gions where the segmentation criterion used is region with scalar value
>= 7.0. After the segmentation is done, all the isolated regions are
treated as separate features and a segmented region is selected as the
target feature and applied the volume tracking method to track it over
time. Also for applying the proposed method on the same feature,
a small region is selected from the target feature as a representative
sample. Figure 15a and 15c show the extracted feature obtained by
the volume tracking method at time steps 3 and 8 and Figure 15b and
15d show the results produced by the proposed method without the
background context. By observing the results depicted in Figure 15,
it is evident that the proposed method generates very similar results
compared to the volume tracking algorithm and can robustly track the
feature. So, in the absence of a predefined feature definition, the pro-
posed method presents a tracking framework which allows users to
highlight their target region of interest directly in the raw data and
automatically track it over time efficiently.

8 PARAMETER CHOICE AND PERFORMANCE ANALYSIS

From Equations 2 and 4, we observe that β controls the contributions
of the new time step and the previous time step while estimating the
GMM parameters. So, the value of β determines how quickly the
parameters of the GMMs change with time. Since the transition in the
time-varying process is usually smoother, changing the value of β does
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(a) Tornado fea-

ture with β =

0.2.

(b) Tornado fea-

ture with β =

0.4.

(c) Tornado fea-

ture with β =

0.7.

(d) Vortex fea-

ture with block

size 4X4X4.

(e) Vortex fea-

ture with block

size 8X8X8.

Figure 16: Parameter choices for the proposed method.

not impact the results significantly. However, increasing the value of
β may cause some loss of accuracy in the estimated feature as can be
seen from Figures 16a-16c. In all the experimentation, we have found
that β = 0.2 works well and gives stable results. So, we have used β =
0.2 for all the case studies. Since we advocate for modeling the local
properties of the data for accurate feature classification, the proposed
method works well for smaller block sizes. Smaller blocks allow us to
better preserve the accuracy of the feature in the classification field. In
Figure 16d and 16e we show the results obtained from the vortex data
set with block sizes 4X4X4 and 8X8X8 respectively. It is observed that
in both the cases the proposed method is able to segment the feature,
however, the one with the smaller block size produces a more refined
estimated feature.

Table 1: Data set descriptions and average CPU Time performance per
time step for different computation components.

Data Sets
Block

size

Classification Field

Creation (secs.)

Tracking

(secs.)

Tornado 4X4X4 3.580 1.432

Hurricane Isabel 5X5X5 5.041 0.737

Vortex 4X4X4 3.601 0.492

Earthquake 5X5X10 51.133 15.83

Flow Around a

cylinder
4X4X4 1.1724 0.3378

In Table 1 the timings are reported for the test cases. The classifica-
tion field generation time includes I/O time and can be done separately
before the tracking process. The incremental estimation of the GMMs
and the foreground estimation algorithm requires only a linear scan of
the raw data. The incremental algorithm used here is significantly less
expensive in estimating the GMM parameters compared to the off-line
EM algorithm and also suitable for streaming data/in-situ frameworks.
The estimated GMMs are used for computing the feature similarity
measure and finally the previously measured foreground information
is combined with the similarity measure to generate the classification
fields. The advantage of the method is that even when the feature is
changed, the algorithm does not require the access to the raw data
and can generate the classification fields using the previously com-
puted GMMs. It only needs raw data access for the first time step to
re-estimate the feature GMM. Since we use mixture of Gaussians to
model the data, the storage complexity is significantly low as we have
to store only the parameters of the GMM and a possibility value for
each block for future use. For creating the final possibility field a seg-
mentation based region growing algorithm is used. Table 1 shows the
tracking time separately for all the case studies. Also, since the com-
putation is done block-wise, therefore for significantly large data sets,
the algorithm can be parallelized by distributing data over multiple
nodes and processing each block in parallel.

9 DISCUSSION

For any feature tracking algorithm, a robust extraction method is a
key component, because if the extracted features are not reliable, then
tracking them can lead to misleading outcomes. Almost all of the pre-
vious tracking works have assumed a predetermined feature definition
for the extraction stage. However, little attention is paid when the pre-
cise feature definition can not be obtained. In this work, we extend
the capability of feature extraction and tracking algorithms by propos-
ing a new distribution driven approach which is able to deal with the

uncertainties inherent in the given fuzzy feature definition and allow
reliable feature extraction and tracking.

For tracking predefined volumetric features, researchers have pro-
posed comprehensive techniques [15, 35]. However, one potential
disadvantage of those techniques is that, if the feature definition is
changed, the algorithm would require going through the raw data
again. In another work, a texture based feature tracking algorithm
was proposed in [2] where high-dimensional textural attribute vectors
are used for feature representation. The technique obtained accurate
results even with low temporal sampling. But the technique required
to find an appropriate neighborhood window for searching the feature.
Also, the drifting problem is recognized as a limitation of this work.
A recent trajectory based feature tracking algorithm [30] has demon-
strated promising results, but it is limited to only data sets containing
additional particle data and its accuracy is dependent on the particle
density. A more general flow pattern extraction technique for 2D flow
fields has been introduced earlier in the works of Schlemmer et al.
[32] based on moment invariants. The method is able to detect criti-
cal points in flow fields and also find user defined (in circular domain)
complex flow patterns from the data efficiently. The work presented
in [32] and the proposed method, both achieve feature estimation by
utilizing a pattern matching approach where we use distributions as a
statistical pattern for the target feature. The goal of our algorithm in
this work is to efficiently track vaguely defined volume features in 3D
time-varying scalar fields.

Our method efficiently exploits both spatial and temporal coherency
present in the data and utilizes them to compute the two key infor-
mation: (1) motion and (2) similarity with target feature distribution.
Since none of these information alone is sufficient for achieving a ro-
bust feature extraction, we combine them to construct a feature-aware
classification which helps us to extract and track key features. So,
in the absence of precise feature definition, proposed method allows
tracking of fuzzy features robustly. Another advantage of the proposed
method is the use of the incremental framework for data modeling.
Since the model does not require all the data beforehand and can work
as new data stream in, the method is suitable for a in-situ feature track-
ing framework. Also the parametric distribution representation keeps
the storage requirements tractable as the data size scales up. How-
ever, with increased block size, the feature extraction accuracy gets
affected since smaller features inside a block can not be captured with
sufficient details. Also, if multiple features exist inside a block then,
the proposed method will detect the block as part of the feature but
separation between them is not be possible.

10 CONCLUSION AND FUTURE WORKS

In the absence of a precise feature definition, the proposed method
models the data space and the specified region of interest using mix-
tures of Gaussians and transforms the data space into a feature-aware
classified field where high valued regions reflect a higher possibility
of the existence of the feature. Such a distribution driven classification
allows us to construct a robust tracking algorithm where the tracking is
performed in the classification field. In the future, we wish to integrate
our system with an in-situ streaming data framework to perform real
time feature extraction and tracking. Besides this, we would like to
adapt our method for feature tracking in time-varying ensemble data
sets and also to multivariate data sets. Furthermore, we also want to
study the effectiveness of our method on data sets with sparsely sam-
pled time steps.
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