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Abstract— Identification of early signs of rotating stall is essential for the study of turbine engine stability. With recent advancements
of high performance computing, high-resolution unsteady flow fields allow in depth exploration of rotating stall and its possible causes.
Performing stall analysis, however, involves significant effort to process large amounts of simulation data, especially when investigating
abnormalities across many time steps. In order to assist scientists during the exploration process, we present a visual analytics
framework to identify suspected spatiotemporal regions through a comparative visualization so that scientists are able to focus on
relevant data in more detail. To achieve this, we propose efficient stall analysis algorithms derived from domain knowledge and convey
the analysis results through juxtaposed interactive plots. Using our integrated visualization system, scientists can visually investigate
the detected regions for potential stall initiation and further explore these regions to enhance the understanding of this phenomenon.
Positive feedback from scientists demonstrate the efficacy of our system in analyzing rotating stall.

Index Terms—Turbine flow visualization, vortex extraction, anomaly detection, juxtaposition, brushing and linking, time series.

1 INTRODUCTION

The study of turbine engine stability has been an ongoing research in
aerospace engineering. In spite of the advances in technologies, the
optimum performance of jet engines is still limited by the safe oper-
ation of the compressors. This limitation is mainly due to the emer-
gence of the rotating stall when the operating range is pushed beyond
the safety limit. The rotating stall is a local disturbance in the airflow
through the turbine blades, which propagates among blade passages in
the opposite direction of the rotor, thus increasing the loading of the
blades. Although subtle initially, sustained rotating stall can eventu-
ally lead to violent system instability causing destructive damage to
the engine. Therefore, early detection of stall inception is essential to
obtain sufficient response time in order to prevent engine failure.

Due to the recent advancements of parallel computing capabilities,
application scientists can now perform high accuracy numerical sim-
ulations based on computational fluid dynamics (CFD) techniques in
high resolutions. The results of the simulations contain rich informa-
tion aiding domain scientists in understanding the complex nature of
rotating stall. More specifically, researchers want to investigate: (1)
the early signs of the rotating stall and (2) which local regions show
such signs and at what time step? The identification of early signs
of stall in the simulation data is important because the scientists can
then study the simulation data around the detected time step in order
to develop new stall precursors for practical use. However, since the
size and complexity of the simulated unsteady data become signifi-
cantly large, it poses unique challenges for the domain scientists to
efficiently process or explore the simulation results in order to under-
stand the stall phenomena. Moreover, stall analysis involves temporal
data analysis, which requires appropriate visualization techniques that
can effectively convey the extracted information from the time-varying
data. The domain scientists also need to visually verify the occurrence
of stall once it is detected through the hypothesized stall precursor
analysis methods. Therefore, it is required to provide a visual analyt-
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ics system that includes the domain scientists in the exploration loop,
where they can synthesize and verify hypotheses through visualized
interaction with the data.

In this paper, we present a workflow for the analysis and visualiza-
tion of transonic jet engine simulation data undergoing rotating stall.
We first utilize existing stall precursor techniques to identify time steps
and blade passages which are more susceptible to stall. Based on a re-
cent study in turbomachinery, stall can be identified by tracking the
trajectories of vortices close to the blade tips over time [23]. We pro-
vide an efficient algorithm to extract and analyze the vortices from the
simulation data. Furthermore, since rotating stall initiating in local
regions of the rotor can be characterized as local disturbances, we in-
troduce a novel method of instability analysis by detecting statistically
anomalous regions among the blade passages. To effectively convey
the analysis results over all blade passages and time steps, visual com-
parison tools using interactive juxtaposed plots are devised to reveal
patterns allowing the scientists to quickly identify time periods and
blade passages undergoing potential rotating stall. Once an interesting
temporal and spatial region is located, a unified visualization system
incorporating several spatial data visualization techniques allows the
user to visually verify the suspected regions and further explore the
data. Feedback from the domain scientists shows that the proposed
integrated visual analytics system can substantially reduce the search
space of the problem. Also, the patterns revealed by the proposed
visualization methods for the stall analysis results demonstrate the po-
tential for earlier identification of stall inception. Therefore, the con-
tributions of this work to stall analysis and visualization are threefold:

1. Efficient algorithms for detecting stall precursors using an exist-
ing vortex analysis technique and a new statistics based method
are proposed. The later is shown to be able to detect stall early
in our study.

2. Comparative visualization techniques are applied to the above
analysis results to facilitate visual identification of abnormalities
that lead to stall.

3. A visual analytics framework for stall study is presented that in-
tegrates temporal and spatial visualization techniques for stall
detection, verification, and further exploration in large datasets.

The structure of the rest of this paper is as follows: Section 2 dis-
cusses the related works and techniques. In section 3 we provide
further information about stall and its known precursors. Section 4
presents our stall precursor analysis method, followed by our visual
exploration framework for the verification of the precursors in Section
5. The results are shown in Section 6, and discussed in Section 7. We
conclude the paper in Section 8.



2 RELATED WORK

To the best of our knowledge, this work is among the first visual an-
alytics frameworks specific for the study of turbine engine stall. In a
broader scope, visual analysis of different types of turbine flow has
been studied in various purposes. Sadlo et al. [38] proposed a frame-
work for design optimization of a hydraulic turbine, which focused on
visualization of vorticies and analysis of vorticity distribution. In the
analysis of power output in wind turbines, Shafii et al. [43] proposed a
framework to analyze vortex-turbine interaction. Downstream vortices
are visualized in vortex hulls and the degrees of intersection are color
coded on the turbine blades, along with plots of related measures over
time. Among works submitted to IEEE Visualization Contest 2011 on
the study of a centrifugal pump turbine, Yee et al. [8] argued that de-
tailed variations are easily missed in video presentation. To summarize
vortices detected from all time series, they proposed a single-image
summarization technique that visualizes vortices in ribbons.

Compared to previous research on related problems, our work fo-
cuses on the identification of abnormalities and patterns from large-
scale time series data. As scientists are still exploring the criteria to
detect stall inception, the current approach is through comparing flow
phenomena in different blade passages and time steps. Therefore, in
our problem comparative visualization of different time steps is more
important than rendering the solution of a single time step. To ana-
lyze large unsteady data and provide effective summary visualization
of all passages and time steps, techniques including efficient vortex
detection, anomaly analysis, as well as brushing and linking are used.

Vortex analysis in our work as well as all the above turbine-related
works is an important means to understand the underlying flow phe-
nomena. Jiang et al. [26] provided a review of different types of vor-
tex detection methods. Depending on the choice of vortex definition,
they categorized vortex detection methods into line based and region
based approaches. Line based approaches detect and connect points
of vortex cores to generate vortex core lines; region based approaches
instead detect possible points associated in vortex regions. In general,
line based approaches provide compact representation of vortices but
region based approaches are computationally cheaper.

In our approach, λ2-criterion [25] is used to efficiently extract vor-
tex regions. λ2-criterion for vortex detection has been applied in many
previous studies for flow analysis purposes [29, 41, 44], as well as in
the aforementioned works of turbine analysis. The method evaluates
the Jocobian of flow velocities surrounding a given point, and label
the point based on the eigenvalues of the matrix [S2 +R2], where S is
the rate-of-strain tensor and R is the rate-of-rotation tensor. The points
that get negative second-largest eigenvalues (a.k.a. λ2) are considered
as part of a vortex region, and the more negative the value the more
probable it is in a vortex. Alternative region based vortex measure
Q-criterion [24] has also been widely used.

Anomaly or outlier detection has been studied in a variety of fields
including statistics, machine learning and data mining with different
data models and anomaly types [2, 9, 22]. In statistics, outliers are
determined according to a presumed distribution, typically a normal
distribution. Z-test detects outliers by examining each sample value
and computing its deviation from the mean. If any of these deviations
is larger than a scalar multiple, typically 1.96x, of the standard de-
viation, the corresponding sample is considered as an outlier. Since
the underlying standard deviation of the data is typically unknown,
and using the standard deviation computed from the small number of
test samples can be biased from outliers, Grubbs’ test [20] is thus ad-
vantageous in determining the proper scalar multiple according to the
number of samples. More advanced statistics approaches to obtain
model parameters in time series include regression based methods [1]
and EM algorithms [16]. In this work we use Grubbs’ test for anomaly
detection among the blade passages to detect the sign of instability.

Besides statistics approaches, when the data distribution is un-
known, distance based methods like k-nearest neighbors are gener-
ally used, with time complexity typically higher than linear complex-
ity [28, 35]. Alternatively, when a subset of data can be labeled to be
normal or abnormal, supervised approaches are used to train the data
model for anomaly detection [18].

Juxtaposition (or small multiples [5, 46]) is an effective visual de-
sign that encourages side-by-side visual comparison of multiple facets
of a complex data set, without overplotting or occlusion that may oc-
cur in shared space techniques [17]. This comparative visualization
has been used in many applications such as parameter space analysis,
stock market trend analysis, census demographics, climatology and
network analysis for various visualization plots such as bar charts, line
charts, and adjacency matrices [27, 30, 31, 47].

Brushing and linking are interaction techniques commonly used
to enhance scatterplot matrices [4, 6], parallel coordinates [3, 15] and
other small multiple views [37]. The user brushes with an input device
on one plot and the linked data points on other plots are highlighted
concurrently. This effectively associates plots from different views of
the data together. In combining scientific and information visualiza-
tion views, Gresh et al. [19] proposed WEAVE, which allows users to
brush on 2D statistics and 3D spatial views of data. Doleisch [14] in-
troduced SimVis, which integrates several visualization techniques in-
cluding smooth brushing with fuzzy classification and time-dependent
feature specification for unsteady CFD data. In our work, we extend
the user interaction of brushing and linking to the search of the first
occurrence of a qualified event, i.e. possible stall inception among the
juxtaposed scatter plots of the temporal data.

3 MOTIVATION, BACKGROUND AND APPROACH OVERVIEW

Stall inception has been actively researched for the past few decades.
Although modern engine manufacturers can estimate the engine’s safe
operating range and impose a safety margin for unpredictable manu-
facturing variances, scientists and engineers still strive for narrowing
the margin to obtain increased engine performance by suppressing any
instability once it is detected. Therefore, to obtain sufficient response
time before engine failure, early detection of stall is an important re-
search to the related fields. Among instances of engine failure, rotating
stalls have been identified as a cause of destructive flows. A rotating
stall starts from localized flow separation from a turbine blade surface,
which disrupts normal path of flow and forms small stall cells in the
blade passages. Instead of following the bulk airflow direction, the
stall cells propagate around the rotor at a slower rotating speed than
the blades, thus inducing unbalanced forces on the turbine blades. The
initial signs of stall cells can be subtle and intermittent, but sustained
stall cells can quickly grow and become destructive to a compressor.
To identify stall cells, it is required to observe the evolution of abnor-
mal flow behaviors over time instead of at a single instance, thereby in-
creasing the complexity of analyzing rotating stall. Traditionally, mea-
sures such as mass flow rate and pressure probe-based analysis have
been widely adopted to detect rotating stall. However, these methods
still have their limitations at predicting when stall will occur, which
will be described in Section 3.1.

With the advances of computation performance on supercomputers
in the past decade, analyzing data generated from numerical simula-
tions opens new opportunities for stall precursor research. A high-
resolution CFD solver, TURBO [10], has recently been proven to be
capable of capturing the major characteristics of stall [11]. However,
the large size of the simulation results and the lack of visualization
tools specific to the problem pose significant challenges for the scien-
tists to study the data. Therefore, in this work, we present an analysis
and visualization framework which extracts pertinent information for
stall analysis from large scale simulation data.

The datasets used in our experiments are generated from simula-
tions of a NASA single-stage compressor [36], which is a representa-
tive model of transonic axial compressor. The geometry of the rotor
consists of 36 blade passages, shown in Figure 1. The solutions are
computed by TURBO, which solves the Navier-Stokes equations in
the full-annulus model. TURBO generates high-resolution unsteady
flow fields for all passages, which are then analyzed in our framework
to enhance the understanding of rotating stall. Several simulations
were performed with different operating conditions that will lead to
stable or stall conditions for the purpose of studying the transitions
between them. In the following we first use a simulation dataset of a
stall condition to explain and formulate our stall detection and analy-
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Fig. 1: The compressor rotor in our dataset with highlighted termi-
nologies.

(a) Mass flow rate plot. The rapid drop in-

dicates the occurrence of stall.

(b) Pressure probe plot. The dotted line

indicates the propagation of disturbance

across different probes.

Fig. 2: Traditional stall detection methods and the plots.

sis method. In the result section, other conditions are tested to verify
and demonstrate the effectiveness of our method. Below we provide
an overview of the existing stall analysis techniques and then describe
the motivations behind the choices of precursors in this work.

3.1 Traditional Stall Detection Methods

In this section, we discuss two typical techniques for analyzing stall in
engines along with their limitations.

Mass flow rate is a standard measure to verify the existence of stall
in numerical experiments [21, 32, 48], which reflects the mass of air
that flows through the compressor per unit time. The mass flow rate,
denoted by ṁ, is defined as:

ṁ = ρv ·A, (1)

where ρ represents the density and v is the flow velocity. A is the area
vector of a surface, which is the cross section of the inlet or exit of the
compressor stage for stall analysis. It has been shown that when a sys-
tem undergoes a rotating stall, the mass flow rate drops significantly.
A plot of mass flow rate against time in Figure 2a shows a character-
istic curve of the mass flow rate drop under stall conditions. It can
be observed that from around time step 250 onwards the mass flow
rate starts to decrease, and it drops rapidly after around time step 350.
By observing the drop of the mass flow rate, scientists can explicitly
identify the occurrence of stall. Although the mass flow rate plot is
commonly used in stall analysis, it does not serve as a stall precursor
because mass flow rate drops after stall occurs. Moreover, since mass
flow rate is a global measure, it does not provide detailed phenomena
or specific regions of stall in data for further analysis.

Use of pressure probes in stall detection has been extensively stud-
ied and adopted widely in practice [12,13,33]. The probes are located
circumferentially within the engine casing to record the pressure os-
cillation over time. Since the pressure in stall cells is distinct from that
of their surrounding areas, pressure probes can capture these spikes in
value once a stall cell passes a probe location. Figure 2b shows the
pressure probe plot used by the scientists to analyze stall. In the fig-
ure, eight curves represent eight pressure probes in different angular
locations, where each curve is a plot of the pressure values over time.
It can be seen that the oscillation of each curve changes drastically
when stall occurs after time step 350 and the abnormality shifts to the

next probe as the stall cells rotate. By correlating the occurrence of
stall cells detected by pressure probes located at different circumfer-
ential locations, the scientists can estimate their rotation speed. When
this speed drops close to half of the rotor speed, stall will occur immi-
nently. In spite of numerous successful stall analysis approaches based
on pressure probing, it is nontrivial to find the proper probe locations
and the number of probes to use, which can be different for different
compressor models. Moreover, the current pressure probe plotting can
only convey a few probes per chart. When the number of curves repre-
senting the pressure probes increases, the chart becomes cluttered and
difficult to visually identify oscillation changes.

3.2 Problem Statement

High resolution data generated from CFD simulations provide rich in-
formation that allows scientists to conduct detailed studies of engine
stall. However, it also poses significant challenges to analyze the large
amount of data that are produced. Since stall analysis requires observ-
ing the temporal evolution of flow behaviors, our goal is to help the
domain scientists visually detect early stall inception from its temporal
patterns and verify the detected regions with their domain knowledge.
With a well-designed visual analytics framework to help identify time
steps and regions of possible stall inception, the exploration time and
effort for stall analysis can be substantially reduced.

The visual analytics system will meet the following requirements
set by the scientists:

1. Analyze the dataset based on selected stall detection methods.

2. Visualize the stall analysis results with sufficient information for
the scientists to identify salient time steps and regions for possi-
ble stall inception.

3. Once an important spatiotemporal region is selected, render the
corresponding data for visual verification of the phenomena and
allow a more detailed exploration of the region.

Next we provide an overview of our visual-analytic framework.

3.3 Overview of The Visual Analytics Workflow

Figure 3 presents a schematic view of the stall analysis and explo-
ration framework. The proposed framework processes large scale un-
steady data and extracts information using two stall analysis methods
based on domain knowledge. The first method uses a stall precur-
sor proposed by Hoying et al. [23], which detects stall based on the
orientation of the tip clearance vortex in each blade passage. We auto-
mate the detection using vortex extraction techniques on the velocity
fields and calculate the orientation of each vortex structure. In the
second method, inspired by the use of pressure probes to detect abnor-
mal value changes, we adopt a statistical method to detect anomalies
among the blade passages. These analysis methods measure the ten-
dency of stall inception for all time steps of data in the preprocessing
stage, which will be described in Section 4.

Once the related information to stall analysis is extracted, the re-
sults are presented in interactive visualizations revealing the temporal
trends. By observing the temporal and spatial patterns in the visualiza-
tion, the scientists are able to determine time steps and blade passages
of possible stall inception for further analysis. After a salient spa-
tiotemporal region is identified, the system then allows the scientists
to explore the raw data at the specific time step in customized visu-
alization, where they can verify the hypothesis of stall inception and
explore the dataset to design new precursors. The visual comparison
and exploration framework will be described in Section 5.

4 DETAILED DESCRIPTIONS OF STALL ANALYSIS METHODS

Although the detection of stall has been under research for several
decades, the actual phenomena that cause the inception of stall are
still not completely understood. There is a growing need of novel stall
precursors which can detect early signs of rotating stall with sufficient
accuracy. In this section, we describe our techniques to compute the
tip clearance vortex angles for stall detection and provide a statistical
analysis method for finding anomalies in the data. Since the dataset is



Fig. 3: Overview of the visual analytics framework.

(a) Tip vortex in a healthy condition. (b) Tip vortex in a stall condition.

Fig. 4: A stall precursor based on the trajectory of the tip clearance
vortex. Here the side view of the rotor is shown. The major flow
direction follows the axial direction.

large in size, the analysis procedure should be efficient and only scan
the data once. Accordingly, the stall analysis methods are designed
with a minimum number of parameters, which extract sufficient but
compact information to allow the user to adjust parameters in the inter-
active visualization. The extracted information will help the scientists
efficiently identify time steps and blade passages of stall inception.

4.1 Stall Analysis Using Tip Clearance Vortex Trajectory

According to previous research, a well structured vortex, called a tip
clearance vortex, usually forms on a blade tip under stable operating
conditions. Normally these vortices do not inhibit flow through the
blade passages. However, as the compressor nears a rotating stall, the
tip clearance vortices start to move in a specific direction and even-
tually breaking down. Hoying et al. [23] hypothesized that when the
angle of the tip clearance vortex core becomes perpendicular to the
axial direction, the condition is approaching stall. A conceptual dia-
gram depicting this phenomenon is presented in Figure 4. Figure 4a
shows the state of tip clearance vortex in a healthy condition; Figure 4b
presents the idea of a near stall condition when the angle between tip
clearance vortex and axial direction is close to 90◦. Hence, by observ-
ing the trend of the change of these angles, potential blade passages
which show early signals of a rotating stall can be identified.

Although stall can be detected through analyzing the tip clearance
vortices, automatic extraction and tracking of these vortices is not triv-
ial. Since the location and orientation of the tip clearance vortex can
vary from blade to blade, it is difficult to identify the tip clearance vor-
tex from the other vortices in a blade passage automatically. We use
prior knowledge from the scientists that the tip clearance vortex can
be seen close to the blade tip in a passage and is usually the largest.
Therefore the search area of vortices can be reduced to one third of the
entire passage region toward the tip as the target search region. For
each detected vortex we measure and store the length and the angle
made with the axial direction, which is described as follows.

In order to efficiently detect vortices from all passages and time
steps, region based vortex detection method λ2-criterion [25] is used.
As introduced in Section 2, negative λ2 measures indicate the corre-
sponding point is in a vortex region, with the more negative the value
the higher possibility it is in a vortex. We allow the domain expert
to examine and tune the threshold by rendering the extracted vortices
from selected time steps in the user interface. This chosen threshold
value is then fixed for vortex extraction processes during the remainder

Fig. 5: Vortices found by the λ2 criterion. The largest vortex close to
the blade tip in each passage is the tip clearance vortex.

of the experiments. Since the tip clearance vortex is generally larger
than other vortices in the same passage in normal conditions and even
in near-stall conditions, we use a higher (more negative) threshold to
filter out small or ill-structured vortices. This allows us to compute
its angle to the axial direction with less noise, before it breaks down
at stall. Figure 5 shows a sample isosurface rendering on λ2 criterion
where the structures of the tip clearance vortices are visible.

Since there may still exist several vortices in the search region, be-
fore measuring the orientation of each vortex region, we employ a con-
nected component labeling algorithm [49] to label the detected points
based on their spatial connectivity, where two neighboring points in
the grids are considered connected. The algorithm scans through each
point and labels the points by a group ID, where connected points
are given the same ID. By doing so, points in different vortices are
grouped separately, from which the respective lengths of the vortex
cores and their angles to the axial direction can be extracted.

Since the tip clearance vortices are usually straight as shown in Fig-
ure 5, the principal component analysis (PCA) is used to extract the
principal direction of each connected point group. From the result of
PCA, we select the direction of the principal eigenvector ~v as the di-
rection of the current vortex core and measure its angle Θ with axial

direction ~Adir. The vortex length is approximated by two times the
principal eigenvalue.

The presented algorithm is efficient because both the λ2 criterion
and the connected component labeling only require point-wise scans
through the data points. In order to identify stall inception with higher
confidence, the scientists would like to see the increasing trend of the
tip clearance vortices to be perpendicular to the axial direction. There-
fore we store the computed lengths and angles of vortices detected in
each blade passage. Combined with our overview visualization show-
ing the temporal changes of vortex angles in all the blade passages, the
expert can more easily detect early signs of rotating stall, which will
be described in Section 5.1.1.

4.2 Statistical Anomaly Detection for Rotating Stall Analy-
sis

While the tip clearance vortex analysis provides one aspect of stall de-
tection, we devise a statistics-based anomaly detection method to re-
veal more information from the simulation results. This method is in-
spired by how stall is commonly analyzed and detected from pressure
probe readings, through observing irregularity of the pressure values.
In a healthy condition, it is expected that the recorded pressure values
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Fig. 6: (a): Illustration of points extracted by the anomaly detection al-
gorithm. All the points p1, ...p8 in the eight passages of this simplified
example have the same radius r and relative angle θ . (b): Anomalous
regions of pressure detected in a time step.

by each probe exhibit periodicity every time a blade passage passes a
probe location. This is because the blades are axisymmetrically sim-
ilar, so ideally the flow behaviors among the blade passages should
also be axisymmetric. When stall cells appear within the passages,
this symmetry breaks down and thus pressure probes are able to detect
the stall cells since abnormal pressure oscillations are observed in the
readings. Therefore, we extract sets of axisymmetric points from the
passages and detect point-wise anomalies for each point set.

In order to efficiently detect point-wise anomalies from large unla-
beled datasets, we adopt Grubbs’ outlier test [20] for each point set
in symmetry, assuming these points form a normal distribution in a
normal condition. Grubbs’ test is widely used for its computational
simplicity [45]. It is more robust than the simpler Z-test when the
standard deviation of the data distribution is unknown, as mentioned
in Section 2. Note that Grubbs’ test is not applicable if too many out-
liers exist in the sampled data. However, since our goal is to detect
early signs of stall inception, it can be expected that outliers are less
observed in relatively normal conditions.

To detect anomalies in the flow field, for each time step we first
group points from each passage that are at the same relative position
into a point set. The number of point sets is equivalent to the number
of grid points in a passage. Figure 6a illustrates a simplified rotor to
facilitate understanding, in which one point from each passage has the
same relative position and will therefore be grouped together.

Formally, in a compressor of m blade passages, a point in the k-th
blade passage, 1 ≤ k ≤ m, can be defined as

pk(x,r,θ) = 〈x,r,θ +θk〉 (2)

in the cylindrical coordinate, where r is the radius from the center and
θ is the relative angular offset from the referencing angle θk of the
k-th passage. x represents the axial position toward turbine downflow,
which is the direction pointing into the paper.

For each set of points p1 · · · pm at the same relative position in each
passage, we form a value set V:

V = { f (pk(x,r,θ))|k = {1,2, ...,m}} (3)

where f (p) is the field value (pressure) at point p. Then for each
point set we apply Grubbs’ test by first computing the mean µ(V) and
standard deviation σ(V) of these values. Based on Grubbs’ test, a
value Vk is an outlier of set V if

|Vk −µ(V)|
σ(V)

>
m−1√

m

√

√

√

√

t2
α/(2m),m−2

m−2+ t2
α/(2m),m−2

. (4)

Here ta,ν is the critical value of the t-distribution with the alpha value
a = α/(2m) and degrees of freedom ν = m − 2. For our case of
anomaly detection, the significance level α = 0.01 is used. Thus with
the sample size m = 36 from 36 blade passages, the right hand side of
the above inequality is around 3.3296.

We repeat Grubbs’ test for all point sets in the dataset and extract
anomalous points in terms of pressure values. Figure 6b presents
one instance of the rotor where detected anomalous regions based on
the pressure values are highlighted. Although the anomaly detection
is performed individually for each point set, in the experiments we
observe contiguous detected abnormal points in local neighborhood,
which form larger anomalous regions in some passages.

Before further experiments were conducted to confirm the validity
of our hypotheses, we showed the detected anomalous regions in se-
lected time steps and the expert agreed that our approach has potential
to capture the development of stall cells. However, since a detected
anomalous region alone does not provide much evidence, the expert
asked to see the temporal behavior of the anomalous regions for fur-
ther verification. Therefore, we devised a compact visualization of
detected anomalies from all time steps. From patterns revealed in the
visualization, the expert confirmed that the detected regions are related
to stall cells, as will be discussed in Section 5.1.2.

5 VISUAL ANALYTICS INTERFACE DESIGN FOR STALL ANAL-
YSIS

In this section we present how the visual analytics system integrates
appropriate visualization techniques for the scientists to easily iden-
tify spatial and temporal patterns from the stall analysis results. Since
both of the above stall analysis methods are hypothesized to identify
stall, in order to verify the hypotheses the scientists rely on (1) inspect-
ing trends of the detected results to see how they evolve over time
and how long the detected events persist, and (2) studying the flow
data surrounding the detected regions to observe the temporal trend
of the related variables. To achieve this systematically, in Section 5.1
we first introduce our comparative visualization interface that presents
the trends of the precursor results through multiple juxtaposed charts.
Once an important region is identified through the visualization, our
visual exploration system allows verification and in-depth analysis of
the detected results through spatial visualization techniques, as de-
scribed in Section 5.2.

5.1 Comparative Visualization of Stall Analysis Results

In order to effectively help scientists identify potential stall inception
in a large simulation dataset which stores thousands of time steps, we
devise a comparative visualization tool to convey the results of stall
precursor analyses over all time steps. Our comparative visualization
tool satisfies the following design goals:

1. Can identify time steps and blade passages that are more suscep-
tible to stall. This is done by comparing the measures of the stall
analysis results.

2. Can reveal the temporal pattern of the analysis results. This is
important because a single detected instance may not be signifi-
cant enough to determine stall.

3. Can facilitate the detection of early signs of stall inception from
the analysis results.

We describe the comparative visualization system for each of the
stall analysis method separately in the following sections.

5.1.1 Comparative Visualization of Tip Vortex Angles

According to Hoying et al. [23], stall can be detected when tip clear-
ance vortices become perpendicular to the axial direction. Although
one can search for vortices around 90 degrees by a single scan of the
vortex analysis result, visualization is necessary for the following two
reasons: (1) Since a single instance may not be significant enough to
determine stall, it is required to observe the increasing trend of the
vortex angle toward 90 degrees over a longer time span. (2) With
more information presented, the scientists are able to formulate new
stall precursors with different criterion. Therefore, to effectively con-
vey and compare the vortex analysis results for all time steps and all
passages, we create an interactive juxtaposed visualization where the
vortex angles for each passage are plotted against time and put side-
by-side for contrast.
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Fig. 7: The juxtaposed visualization of tip clearance vortex angles.

(a) Brushing time steps of interest where the vortex angles approach 90◦.

(b) Zooming in from the brushed area.

(c) Highlighting angles around 90◦ in the earliest time steps. The size of the highlighted

region can be easily adjusted to find the first qualifying instance among all passages.

Fig. 8: Illustration of the interface to find the first time step and pas-
sage where the tip clearance vortex first approaches 90◦. Selected pas-
sages are shown for demonstration purpose. Please see the accompa-
nying video for the demonstration.

To provide an overview of the tip clearance angles over all time
steps and passages, it is desired that the visualization simultaneously
presents attributes of each vortex including the angle, length and the
ID of the passage it belongs to. Figure 7 shows the visualization of the
vortex analysis result for the dataset in the stall condition previously
presented in Section 3.1. In the juxtaposed visualization, each small
chart corresponds to a blade passage where the horizontal axis repre-
sents time steps and the vertical axis represents vortex angle. Inside
each chart, each extracted vortex is represented as a dot whose size is
proportional to the corresponding vortex length and the color is mod-
ulated by the closeness of the angle to 90 degrees. If the color is close
to dark red, the vortex is approaching 90 degrees.

Figure 7 shows an increasing trend of vortex angles toward 90 de-
grees, which is more easily seen in passages 2 to 13. Around time step
400, these passages show small and sparse dots, indicating the vortices
break down. Concurrently, in passages 25 to 35 more stable and longer
vortices (larger circles) are displayed with angles around 80 degrees.

To further investigate the time steps and passages where the vortex
angles first approach 90 degrees, the interaction tool allows the user to
brush (Figure 8a) and zoom into the angles and time steps of interest
(Figure 8b). To look for the vortex that first becomes 90 degrees, the
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Fig. 9: Anomaly analysis chart of pressure values.

user can first select an area including degree 90 and then adjust the
width of this area to change the selected time interval. As the user
expands the area width, dots falling within the selected time and angle
interval will be highlighted in all passages (Figure 8c). In this way,
it is easy to contrast vortex angles and time steps across all passages
and find the first occurrence of vortex within the desired angle range,
which can be chosen other than 90 degrees to further explore the char-
acteristics of the tip clearance vortices.

Figure 8c shows the highlighted dots representing the vortex an-
gles first near 90 degrees, which starts from time step 361 in passage
6. This time step coincides with the rapid decrease of the mass flow
rate shown in Figure 2a, but the tip clearance vortex analysis method
provides a more specific time and location for investigating stall phe-
nomena. The user can then select this passage and time step in the
visual exploration tool for verification and further investigation, which
will be described in Section 5.2.

5.1.2 Comparative Visualization of Statistical Anomaly

As discussed in Section 4.2, the anomaly detection algorithm attempts
to identify abnormal regions, which can be stall cells that eventually
cause a rotating stall. To verify this, it is required to see how these
regions evolve over time. In general, the behavior of the anomalous
regions can be classified into three broad types: (1) sporadically ap-
pearing and dissipating over a short time period, (2) remaining at a
similar physical position over certain time steps, (3) moving along
with the blades over certain time steps. In the study of stall incep-
tion, the scientists are more interested in detecting types (2) and (3)
where the anomalous regions persist over a longer time span. Once
they are detected, it is necessary to know the rotation speed of these
hypothesized stall cells among passages.

To meet the above requirements, we utilize a 2D heatmap that
encapsulates both the spatial and temporal patterns of the detected
anomalous regions, as shown in Figure 9. Since we are more inter-
ested in how the anomalous regions move across passages over time
and less in their movement within a passage, in the plot, the horizontal
axis represents the time step and the vertical axis represents the angular
position labeled by the passage ID. We use a colormap for the count of
anomalous points detected in different radii(r) and axial positions(x)
but in the same angular position, with darker color for a larger count.

Through the inspection of Figure 9, two major trends in the propa-
gation of anomalous regions can be observed: (1) Horizontal direction,
meaning the detected anomalies stay in the same blade passages, i.e.,
rotate at the same speed as the rotor over time; (2) slant direction,
meaning these regions move across the blade passages, or rotate at a
different speed than the rotor speed. It can also be seen that before
time step 350, the chart shows fragmented but aligned slant patterns,
as highlighted by the blue line. This means the anomalous region inter-
mittently moves across passages, which pattern cannot be easily cap-



Fig. 10: The visual exploration system. The interface includes stall
analysis tools and an example rendering of streamlines, isosurfaces
and cut planes.

tured if we only visualize a single time step of the anomalous regions
at a time. After time step 350, persistently growing anomalous regions
crossing almost all passages are formed. The time step 350 found for
this dataset is consistent with the drop-off of the mass flow rate shown
in Figure 2a. This result suggests that anomaly analysis can be used to
identify stall. Therefore, the heatmap representation achieves the goal
to reveal patterns for the scientists to track the behaviors of anomalous
regions for signs of possible stall cells. With this representation, the
scientists can also easily find interesting time steps and passages for
further stall study.

While the chart of pressure anomaly provides the expert with clues
of potential stall cells and where they are located, it is desired to calcu-
late the rotational speed of the anomalous region to further confirm a
stall cell has been detected. A line widget is used to find the velocity
by adjusting the end points of an event, as shown by the blue line in
Figure 9. The number besides the line shows the fractional rotation
speed of a stall cell to the rotor speed, where a horizontal line indi-
cates 100% of the rotor speed. The measurement of the rotation speed
reads less than 50% of the rotor speed, which, according to the expert,
indicates the near-stall condition.

5.2 Integrated Visual Exploration System

After the important time steps and blade passages are identified from
the visual comparison tools presented above, our visual exploration
system is designed in a way that the scientists can verify the detection
results and further explore the original dataset. Figure 10 shows the
interface that integrates the above analysis and rendering techniques
for stall analysis. The proposed system is built using VTK, which is a
widely used open-source visualization library [42]. The visualization
system serves two purposes required by the expert: (1) to evaluate and
verify the stall analysis results, and (2) to further explore the dataset
around the selected regions for enhanced understanding.

To verify that the detected passage has a tip clearance vortex an-
gle perpendicular to the axial direction, isosurfaces of λ2 criterion in
the selected time step are used to show the orientation and size of the
vortices. Since streamlines and pressure values are commonly used to
affirm the existence of a vortex structure, the exploration system can
display streamline traces surrounding the tip clearance vortices and cut
planes of pressure values. To explore anomalous regions, the scientists
look for abnormal changes of variable values including pressure, den-
sity, and entropy etc. Regions of the statistical anomalies based on
the method described in Section 4.2 are rendered to provide imme-
diate indication of abnormal regions in the selected time step. The
visualization system allows the scientists to explore the data based on
hypothesis formation and visual verification. In order to reach to a
definitive conclusion, the system allows expert to go back and forth
between the abstract plot-based visualization and data domain explo-
ration so that they can adjust/refine their hypotheses based on visual
feedbacks from the data. The proposed framework involves scientists
in the exploration loop which leverages free exploration of data and
knowledge discovery.

Passage 6Passage 7
Passage 5

Axial Direction

(a) Vortex regions detected by λ2 criterion, labeled with angles to the axial direction.

Passage 7

(b) Streamlines showing the tip clearance

vortex of passage 7, colored in pressure.

Passage 6

(c) Streamlines showing the tip clearance

vortex of passage 6, colored in pressure.

Fig. 11: Tip clearance vortices detected at time step 361. Passage 6
shows the vortex structure more perpendicular to the axial direction.

6 RESULTS AND EXPERT FEEDBACK

In this section we demonstrate the effectiveness of our visual analyt-
ics framework in a rotating stall analysis. In order to verify the two
proposed stall analysis methods are able to detect stall inception, ex-
periments in different operating conditions were performed. The anal-
yses were then shown by our visualization interface and examined by
the domain scientists. The collaboration involved an expert with more
than 28 years of simulation and analysis experience on transonic tur-
bine stages and two aerospace engineering PhD students. The expert
feedback was collected from regular bi-weekly meetings in the past
one and a half years, which allowed us to gradually improve the frame-
work and the experimental design.

The compressor rotor used in experiment consists of 36 blade pas-
sages, each of which is stored in curvilinear grids of dimensions
151 × 71 × 56, forming a multiblock dataset. Thus each time step
requires storage of 690 MB in PLOT3D format consisting of 21.6 mil-
lion grid points. The simulation divides a full turbine revolution into
3600 iterations, where the flow data is output and stored every 25 sim-
ulation iterations. In our experiments, each simulation runs at least 4
revolutions to observe whether stall occurs, which generates at least
400 GB of data with 576 time steps per dataset. Note that the time
steps presented in this paper are in the unit of the stored time steps at
the sampling rate of 25 simulation iterations. In the following, we first
show that our visual analytics system can help detect the inception of
stall, using the previously presented dataset in the stall condition. Then
we demonstrate the applicability of the stall analysis system in differ-
ent operating conditions to show its potential use for stall analysis and
exploration. Finally, the performance measures are listed to show the
efficiency of the stall analysis algorithms.

6.1 Verification of the Proposed Stall Detection Methods

In this section we will verify the proposed method for stall analysis by
showing the consistency of analysis results to what the domain expert
expects. The mass flow rate plot is a standard measure to stall analysis
and thus the basis to verify our analysis results. For the dataset in
the stall condition presented earlier, as shown in Figure 2a, the mass
flow rate drops rapidly starting from around time step 350, indicating
the occurrence of stall. This time step is consistent to our analysis
results. Through brushing the juxtaposed charts of the tip clearance
angles (Figure 8), as discussed in Section 5.1.1, we find passage 6 at
time step 361 showing the vortex angle first approaching 90 degrees.
Similarly, Section 5.1.2 describes that in the visualization of anomaly
analysis (Figure 9), a persistent large anomalous pattern can be seen
starting from around time step 350 in passages 3-6. Therefore both
visual analysis tools allow scientists to detect and verify the occurrence
of stall as well as pinpoint the time steps and passages where it is
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Fig. 12: Anomalous regions of pressure detected within time steps
321-331. These regions grow, shrink, disappear and show up again in
the adjacent passage.

occurring. In addition to the comparison to the mass flow rate, it is
necessary for the expert to inspect the raw data by visualizing the stall
phenomena in the detected regions. The visual exploration system
was used to examine and verify the detected regions with the expert’s
domain knowledge, as described in the following paragraphs.

Verification of the tip clearance vortex analysis. To inspect the
structure of the tip clearance vortex found at time step 361 and verify
its perpendicularity to the axial direction, our visual exploration sys-
tem was used to extract isosurfaces of λ2 measures. In Figure 11a,
the isosurface representing the tip clearance vortex region in passage
6 shows a distinct vortex structure than those in other passages. The
orientation also appears perpendicular to the axial direction. To ob-
serve the flow surrounding the detected vortex, Figure 11c depicts the
streamlines colored by pressure value. From the vortical structure of
the streamlines, it is evident that the selected region has a strong vor-
tical flow. This demonstration shows the efficacy of the proposed jux-
taposed plots to visually detect the time steps and passages having tip
clearance vortex angles close to 90 degrees as a precursor of stall.

Verification of the anomaly analysis. Next, the expert was pre-
sented the heatmap visualization revealing the temporal patterns of
detected anomalous regions, as previously shown in Figure 9. As dis-
cussed in Section 5.1.2, it is hypothesized that the fragmented but
aligned slant patterns in the early time steps are stall cells. Since
according to the expert, stall cells generally appear in areas close to
blade tips, in order to verify this the system was used to render anoma-
lous regions in selected time steps. Figure 12 shows a fixed window
wherein compressor blades move to the right. The surfaces in color
are the detected anomalous regions. This visualization confirms that
the detected regions are close to the tip region.

Expert Feedback. By inspecting the evolution of the anoma-
lous regions over time, an interesting phenomenon caught the atten-
tion of the domain expert. Figure 12a-b shows the anomalous re-
gions detected in passage 12, but disappear in a later time step (Fig-
ure 12c). Later, anomalous regions are detected again in passage 13
(Figure 12d-e). This corresponds to the fragmented slant pattern seen
in the anomaly analysis chart, where the fragmented pattern indicates
the intermittency of the anomalies and the slant direction indicates
their propagation across passages. By seeing this the expert realized
that the detected anomalous regions conform to the behavior of stall
cells. A brief explanation is as the following.

When stall cells occur within a passage, it forms a blockage and
changes the angle of attack (AOA) of the flow. While AOA decreases
in the current passage and stabilizes the flow, it increases in the neigh-
boring passages, which in turn causes a stall there. In this way the stall

(a) Mass flow rate plot.

(b) Tip clearance vor-

tex analysis chart.
(c) Anomaly analysis chart.

Fig. 13: Results of a stable condition using the corrected mass flow
rate of 16.00 kg/s. Figure (b) shows the plot of a passage representing
for all other passages in the similar behavior.

cell transports from one passage to another. Therefore it is evident that
the detected anomalous regions are related to stall cells.

With the evidence that the fragmented slant patterns shown in the
anomaly analysis chart are stall cells, the expert hypothesized that the
anomalous regions detected in the earliest time steps of this dataset are
in fact stall cells. This hypothesis can be justified because the initial
condition of the given dataset was already close to stall. In order to
verify whether the anomaly analysis method can capture the transition
from a stable to unstable condition and detect early stall inception, we
ran more simulations with different throttle settings as below.

6.2 Stall Analysis of Simulations from Different Throttle
Settings

In order to see the applicability of the proposed stall analysis and visu-
alization techniques in different stability conditions, we analyzed re-
sults of simulations in different operating conditions suggested by the
expert. The operating condition can be adjusted by a parameter model-
ing the rates of air passing through the exit throttle of the compressor
in corrected mass flow rates. It is known that setting the corrected
mass flow rate low will cause stall, while setting it high will stabilize
the flow. Based on previous studies conducted on the compressor cur-
rently under investigation, stall will occur when the corrected mass
flow rate is set to 13.80 kg/s, corresponding to the condition used
to produce the data discussed above. To examine the capability of
our stall analysis system for data generated in different conditions, we
present two different throttle settings leading to different conditions:
One is a known stable condition with the throttle setting 16.00 kg/s ;
the other is an initially unknown condition with the setting 14.20 kg/s,
which turned out to be a stall condition after a long simulation run.

6.2.1 Stable Condition (Corrected Mass Flow Rate 16.00 kg/s)

In this case the dataset was generated with a throttle setting of 16.00
kg/s from an initially less stable condition. In Figure 13a, the mass
flow rate increases and stabilizes after time step 200. The visualiza-
tion of the tip clearance vortices also shows no sign of stall, where the
vortex angles maintain around 80 degrees. Figure 13b plots the vor-
tex angle degrees of a passage over time, which represents all other
passages in the similar stable condition.

The anomaly analysis chart in Figure 13c shows anomalous regions
more scattered after time step 200. This scattered pattern is signif-
icantly different than that in the previous stall condition (Figure 9),
which provides further evidence that our anomaly analysis and visual-
ization can distinguish stable and unstable conditions.

6.2.2 Stall Condition (Corrected Mass Flow Rate 14.20 kg/s)

For this throttle setting, a corrected mass flow rate of 14.20 kg/s is
used, which is in between the known stall condition (13.80 kg/s) and
stable condition (16.00 kg/s). Before it turned out to be a stall con-
dition, it was difficult to tell whether this setting would lead to stall.
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Fig. 14: Results of a stall condition using corrected mass flow rate
14.20 kg/s. (a): Mass flow rate plot. (b): Tip clearance angle analysis
charts (Showing passages 25-27). (c): Anomaly analysis chart. The
lower left figure shows the dashed rectangular region within passages
1-10 and time steps 300-500.

As shown in Figure 14a, the mass flow rate first increases from a less
stable condition and becomes stable with small oscillations appearing
after time step 300. A stable mass flow rate is maintained until ap-
proximately time step 600, where the mass flow rate begins a slow
decline. Finally stall occurs at around time step 1500, or almost 10.5
rotor revolutions. The data size of the entire simulation output is 1TB.

In the tip clearance vortex analysis shown in Figure 14b, the time
step when the vortex angles first become 90 degrees is also around
1500, occurring in passages 25-27. The similar time steps and pas-
sages of stall occurrence can also be observed in the anomaly analysis
chart in Figure 14c. Additionally, the fragmented slant patterns con-
tinuously appear and propagate from the beginning of the simulation.
These patterns are similar to that previously shown in the stall condi-
tion with the throttle setting at 13.80 kg/s (Figure 9), which correspond
to the occurrence of stall cells. This experiment shows that instabil-
ities, though not clearly picked up by mass flow rate and tip vortex
analysis, are already present in earlier time steps and captured by our
anomaly analysis method.

6.3 Algorithm Performance and Storage Size

To measure the performance of our stall analysis algorithms, a Linux
desktop machine was used with a 7200 RPM disk, 16GB RAM and the
Intel Core i7-2600 CPU supporting up to 8 concurrent threads. The
algorithms were implemented with OpenMP parallelization, where
the vortex angle computation was parallelized over passages and the
anomaly analysis computation was parallelized over point sets. It took
around two hours to complete processing a dataset of 576 time steps
(four rotor revolutions). Within each time step, the computation of the
λ2 criterion on the curvilinear grids, the vortex angles and the anomaly
analysis took 7.6, 0.63 and 0.42 seconds in average, respectively. The
average I/O time was 1.9 seconds to load the PLOT3D files. The ex-
tracted information used for the comparative visualization, output in

text formats, was less than 0.1 MB per time step. The small file size
was a result of vortex analysis only storing the lengths and angles per
detected vortex and the anomaly analysis only storing the count of
anomalous points per angular position, as described in Section 5.1.2.

7 DISCUSSION OF THE EXPERIMENTAL RESULTS

The above results on various throttle settings demonstrate the capa-
bility of our visual analytics system to detect stall inception. In all
tests, the identified time steps of stall are consistent with the standard
mass flow rate analysis results. More importantly, the anomaly analy-
sis and visualization, as shown in Figure 9, displays pronounced trends
at a much earlier time than the other two methods (vortex angle and
mass flow rate analysis). According to the expert this shows that the
proposed statistics-based anomaly analysis method is able to capture
instability in the flow field, and can be a useful tool to predict the ulti-
mate occurrence of stall. Early stall detection can also avoid wasting
unnecessary simulation cycles in order to determine whether a throttle
setting leads to stall. This is especially useful in fine-tuning the throttle
setting to find the critical stall point.

This study also demonstrates the successful application of visual-
ization to feature detection, when the characteristics of the feature
is to be discovered and the detection criteria are to be searched for.
The intermittent behavior of the stall cells makes automatic detection
and tracking of these stall cells difficult, since most object tracking al-
gorithms require a certain type of spatial coherence in adjacent time
frames [7, 34]. Instead, by aligning the detected regions of all time
steps, our visualization of anomaly can reveal implicit patterns easy
to pick up by human eyes. Since the proposed anomaly analysis ap-
proach uses a general statistics method, we believe it can be applied to
stability analysis in other rotating devices as well as other data types
where symmetry is present.

In terms of limitation, our current visual design does not distin-
guish the different locations of anomalous regions in a given passage
(e.g., tip or hub area) and requires the user to visualize the original
data. We plan to add more visual design elements into the heatmap,
such as more colors and interaction. In addition, in order to extract
tip clearance vortices, the current method requires the user input of
λ2 threshold when a new model is given. Visualization tools to aid
the threshold search like predicates [39, 40] and more sophisticated
extraction criteria can be applied in the future work. To obtain more
precise tip clearance vortex angle, line-based vortex detection methods
can be used to explicitly obtain vortex core lines. Finally, the visual
exploration tool can be further improved by integrating brushing and
linking techniques on 3D views and the selected tip clearance vorticies
and anomalous regions from the corresponding visualizations.

8 CONCLUSIONS

We present a visual analytics system with integrated visualization
techniques to help scientists study the complex phenomena of rotating
stall. The system tightly couples domain knowledge into stall analysis
algorithms, which efficiently extract essential information from large
simulation data. The analysis results are depicted through compact
and comprehensible visualization techniques using interactive plots.
Our integrated visualization interface allows the scientists to verify the
hypothesized stall inception regions and further explore the detected
regions in detail. Experimental results and positive feedback from do-
main scientists provide a strong indication of the efficacy and potential
of our system to help future stall analysis and precursor development.
The future work is to continue the evaluation of the proposed stall
analysis and visualization techniques in other operating conditions and
perhaps on different compressor models.
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