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Abstract. In situ analysis has emerged as a dominant paradigm for
performing scalable visual analysis of extreme-scale computational sim-
ulation data. Compared to the traditional post hoc analysis pipeline
where data is first stored into disks and then analyzed offline, in situ
analysis processes data at the time its generation in the supercomputers
so that the slow and expensive disk I/O is minimized. In this work, we
present a new in situ visual analysis pipeline for the extreme-scale multi-
phase flow simulation MFiX-Exa and demonstrate how the pipeline can
be used to process large particle fields in situ and produce informative
visualizations of the data features. We deploy our analysis pipeline on
Oak Ridge’s Summit supercomputer to study its in situ applicability and
usefulness.
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1 Introduction

With increasing computing capabilities, scientific simulations are now producing
very large-scale spatio-temporal data sets, containing intricate features that need
to be analyzed and visualized efficiently to further scientific discoveries. While
domain scientists focus on making their simulations more accurate and efficient,
they need flexible and scalable analysis capabilities to study their data. Many
research studies have shown that the traditional post hoc analysis paradigm is
no longer scalable as handling, managing, and analysis of extreme-scale data sets
will be prohibitive [2,3,9]. This is primarily due to slow disk I/O speed compared
to the rate at which data is produced coupled with the post hoc processing needs
of extreme-scale data [6,11,28]. As a result, only a sparse set of time steps of the
simulation can typically be stored on the disk for future analysis.

In situ analysis addresses this problem by deploying visualization algorithms
directly with the simulation, i.e., while the data is produced. This powerful strat-
egy has been shown very effective in producing high-quality visualization arti-
facts of the simulation data that otherwise would be significantly time-consuming
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to generate [3,16,19,25]. However, due to the complexity of the scientific data
sets and the domain-specific features within them, it is often less effective if only
the raw simulation data is visualized. An alternative approach is to first apply
an appropriate data analysis algorithm in situ and then produce visual arti-
facts of the derived data that highlight the complex data features more clearly
compared to the raw data. The informative visual artifacts generated from the
derived data can be used to explore the evolution of the data features during
the simulation run and application scientists can verify and/or validate various
scientific hypotheses.

In this work, we present the first ParaView Catalyst-based [14] in situ analysis
pipeline for the very large-scale multiphase simulation MFiX-Exa [20,21]. MFiX-
Exa is currently being developed at the National Energy Technology Laboratory
(NETL) and is on its way to harness the upcoming exascale supercomputers to
further scientific discoveries [12] as part of the Exascale Computing Project
(ECP) [13].

The primary focus of the MFiX-Exa simulation is to study the working prin-
ciples of complex and large-scale chemical looping reactors. To comprehend the
physics behind such rectors, MFiX-Exa developers study simulation cases where
millions of particles interact with each other inside a fluidized bed. The formation
of bubbles (void regions that are characterized by low particle density) in these
fluidized beds is a prime phenomenon of interest for domain scientists as the
evolution and characteristics of these bubbles can indicate the overall stability
of the reactor. To study the bubble dynamics, the simulation needs to run for a
sufficiently long duration, resulting in an extreme-scale spatio-temporal particle
data set with tens of thousands of time steps. Post hoc analysis of such time-
varying data is significantly time-consuming and so the experts typically run
small-scale test cases as they currently lack the capability to explore full-fledged
three-dimensional bubble dynamics.

Our in situ analysis pipeline addresses this issue and enables the domain ex-
perts to perform in situ analysis and visualization of their simulation data with-
out needing to store the large-scale particle fields. We show that the Catalyst-
based in situ pipeline can generate informative visualizations of the particle data
and also can be used to apply data analysis algorithms so that the final visual
artifacts show the bubble features clearly. Since for these large-scale particle sim-
ulations, it is impossible to see the bubbles clearly from the raw particle data,
we first compute the particle density fields in situ and then produce volume-
rendered images of the particle density field that clearly show the bubbles in
the simulation data. We contribute a new VTK-based particle density estima-
tion filter that users can use in their analysis pipeline to compute scalar particle
density fields from particle data. Our in situ pipeline also allows storing of the
in situ generated particle density fields which are significantly smaller compared
to the original raw particles fields. These particle density fields can be used post
hoc for further in-depth study of bubble dynamics.
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2 Related Works

The need for in situ data analysis and visualization has grown significantly in
recent years to address the problems arising from slow disk I/O. The visual-
ization community has developed several high-quality libraries to enable in situ
analysis and rendering of data. One of the early attempts of in situ visualiza-
tion was made by Haimes [15] to visualize large unsteady data sets. For per-
forming in situ analysis and visualization, Fabian et al. developed the Catalyst
library [14], which uses functionalities of ParaView during in situ run. Catalyst-
based in situ analysis has been widely adopted in the scientific visualization
community [5,8,29]. Similarly, run-time visualization with LibSim using VisIt
was proposed by Whitlock et al. [27]. In another work, Lofstead et al. added
ADIOS as an in situ visualization framework [18]. Vishwanath et al. enriched
simulation time data analysis by proposing GLEAN [26]. A more recent fly-
weight in situ analysis infrastructure has been developed by Larsen et al. [17].
An open-source in situ visualization infrastructure called SENSEI is also being
developed that allows interfacing between different in situ infrastructures with
the simulation code [24]. For a more comprehensive guide to the various types
of existing infrastructures, readers are referred to the following state-of-the-art
report [6]. To gain detailed knowledge about the in situ relevant terminologies
and standards, developed by the visualization community, please refer to [10].

3 ParaView Catalyst-based In Situ Visual Analysis
Workflow

This section describes the analysis pipeline that we have developed to enable in
situ analysis and visualization for the MFiX-Exa simulation. Starting with an
overview of the Catalyst adapter, we describe its access to MFiX-Exa data in the
in situ environment and then discuss the visualization methods and algorithms
that are used to generate effective visual artifacts for MFiX-Exa data.

3.1 In Situ Catalyst Adapter Design

The first step to build an in situ analysis environment for a simulation code is
to design an efficient in situ adapter that can tap into the simulation memory
while the data is being generated. Making the data accessible in situ is necessary
to move post hoc analyses into the simulation while it is running. Since different
simulation codes have different data layouts in memory, designing a general in
situ adapter can be a challenging task.

The MFiX-Exa simulation uses the AMReX [4,30] library as its internal
software framework to store and process the simulated particle data. AMReX is
a software framework that facilitates the development of scalable, block-based,
massively parallel, and adaptive mesh refinement (AMR) applications. In this
work, we have developed a ParaView (version 5.9.1) Catalyst-based (version 1) in
situ adapter program that can read the particle data structures of AMReX (more
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Fig. 1. Schematic of the in situ analysis and visualization pipeline showing different
types of visualization and data artifact outputs.

specifically access the particle data from AMReX’s ParticleContainer Class) and
then convert it into a VTK-based [23] data structure and provide a handle to
the user in the in situ environment. To convert AMReX -based particle data into
a VTK-based data structure, currently, the data is copied out. In the future, we
will move to VTK’s zero-copy capabilities to pass the pointers directly. Algorithm
developers can directly use this VTK data in their program to analyze or produce
visualizations of the data in situ. Since MFiX-Exa produces particle data, the
simulation data is represented as VTK Polydata in the in situ environment. The
in situ adapter also makes the simulation’s MPI communicator accessible in the
in situ environment so that users can deploy data processing and visualization
algorithms that require distributed communication.

One of the advantages of the Catalyst adapter is that since this adapter is de-
veloped for the AMReX’s particle container, it can be generalized and reused for
performing in situ analysis for other simulations that use AMReX with minimal
modification. Hence, even though the focus of this work is on the MFiX-Exa sim-
ulation, the in situ adapter and visualization techniques can be easily extendable
to other particle-based simulations that use AMReX for data representation.

Figure 1 shows a schematic of the in situ analysis pipeline. Users can generate
a Catalyst script that contains the visual analysis pipeline to be executed during
the in situ run. This Python script is generated from the ParaView application
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Fig. 2. Steps of in situ processing of the particle data for the proposed work.

as shown. The script is deployed in situ using Catalyst’s in situ infrastructure.
During the in situ run, the in situ adapter makes the data available in this Python
script as a VTK Polydata at each MPI process, and the user can process and
analyze the data further. The pipeline uses MFiX-Exa’s MPI communicator and
using Catalyst’s built-in fault tolerance capabilities, we ensure that even if our
script is unable to process the data, the simulation does not crash. At each time
step, MFiX-Exa calls a Catalyst routine and passes it data. The Catalyst routine
calls the Python script that the user provides to do the analysis and visualization.
So on the cluster node, we run the MFiX-Exa simulation, which periodically
calls Catalyst. So the Python script is periodically called to do the visualization.
In Fig. 2, we present the in situ analysis and visualization tasks that we have
used in this work to explore the MFiX-Exa data set. We generate visualization
outputs of the raw particle data where each particle is rendered as a sphere and
colored by its velocity magnitude. The velocity magnitude is computed in situ
using ParaView’s Calculator function. Since one of the primary focuses of the
application developers is to study the bubble features in the simulation, we also
compute the particle density field and generate visualizations of this field that
can show the bubbles more clearly compared to the raw particle visualization.
To further analyze the particle density field and the bubble features, we also
allow storing the particle density fields on disk. Note that, compared to the
raw particle data, the size of this particle density scalar fields is significantly
smaller and hence our method is also able to achieve sufficient data reduction.
Using these reduced density fields, flexible bubble dynamics analysis can be done
during post hoc analysis.

3.2 In Situ Particle Density Estimation for Effective Visualization
of Data Features

Since the raw data format for MFiX-Exa is particle-based, we first add the ca-
pability to generate particle renderings at each time step. We also color each
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(a) Particle Rendering for
MFiX-Exa Case 1.

(b) Particle Rendering for MFiX-Exa Case 2.

Fig. 3. In situ generated visualization of raw particle fields for two different MFiX-Exa
simulation test cases where the particles are colored by their velocity magnitude. Red
particles indicate particles having higher velocity.

particle using its velocity magnitude so that the domain experts can glean addi-
tional information about the particle dynamics. In Fig. 3(a), we show the particle
rendering of an MFiX-Exa simulation test case (MFiX-Exa Case 1), which con-
tains around 4 million particles. The low-density particle regions, bubbles, can
be seen in this figure. We also observe that particles underneath a bubble have
high velocity. This visualization is similar to a post hoc visualization workflow.
Potential issues with this visualization include that the actual bubble features
are not seen and that smaller bubbles are difficult to visualize. These issues be-
come much more severe as the number of particles increases in the simulation
domain. In Fig. 3(b), we present particle rendering of a much larger MFiX-Exa
simulation test case (MFiX-Exa Case 2), containing around 54 million particles.
As can be seen, even when the size of each particle radius is quite small, we
barely see any bubble feature in the data. It appears that this simulation does
not have any bubbles produced. Thus, the raw particle visualizations are not
suitable when the experts want to study the bubbles in their data.

To address the shortcomings of the raw particle-based in situ visualizations,
we use a particle density field-based visualization that clearly shows the bubble
features in the data set. The resultant visualizations are much more informative
and can be used to study bubble dynamics. Density estimation is often regarded
as a fundamental step necessary for sampling particle fields into a structured
continuous representation [22].

We have used a spatial histogram-based technique to group particles into non-
overlapping bins and then a density field is finally constructed. As the particles
are distributed across multiple compute nodes, we compute the histogram in the
same distributed setting. A local histogram is first constructed at each processing
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(a) Particle density rendering
for MFiX-Exa Case 1.

(b) Particle density rendering for MFiX-Exa Case 2.

Fig. 4. In situ generated visualization of particle density fields for two different MFiX-
Exa simulation test cases where the bubble features (blue regions with low density),
are clearly seen. Note the clear delineation of bubble features and the ability to see the
small bubbles, even for the large number of particles in MFiX-Exa Case 2.

unit by binning the 3D locations of all particles available to each processor. A 3D
histogram is required since we are binning particle locations to estimate spatial
particle density. The number of bins and bin widths on each local processing
unit are the same and are estimated from the global bounds of the particles.
Finally, the partial histograms are combined to construct the global density
histogram by using a parallel reduction operation overall processing units. Each
bin in this global spatial histogram represents particle counts in a local spatial
region. The global 3D histogram is mapped into a 3D regular grid-based scalar
field where each 3D bin center is mapped to a voxel in the regular grid data
and the particle count for that bin is assigned as the particle density value
at that voxel. Specific details about this histogram-based density estimation
can be found in [7] where this technique was evaluated offline. Using a spatial
histogram-based approach to convert the particle data into a density field can
be efficiently performed in situ, keeping the computational cost low during in
situ processing. Note that other density estimation methods can be used here to
estimate the particle density field. However, we believe that the histogram-based
technique is generally suitable for distributed environments as the histograms
can be computed via parallel reduction operation efficiently and give good results
for MFiX-Exa data.

We have implemented the density estimation function in a VTK filter form
so that it can be easily deployed from the Catalyst in situ script. The original
code is implemented in C++ and is first integrated into VTK as an MPI-enabled
parallel filter. Then we call the density estimation VTK filter from the Catalyst
script. The input to the filter is the particle data and the output is a scalar
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Fig. 5. Post hoc visual analysis of bubbles using in situ generated particle density
fields. The left rendering window shows the density field and in the right rendering
window, the bubbles are extracted using a low-density threshold value and then the
connected component algorithm is applied to identify individual bubbles.

field in the form of VTK ImageData. Once this field is produced, we generate
visualizations of this density field and also store the raw density field for further
post hoc analysis.

In Fig. 4(a), we show the in situ rendering of the particle density field for
a time step of MFiX-Exa simulation Case 1. The corresponding particle field
is shown previously in Fig. 3(a). We can observe that the low-density regions
in the density field, the blue regions, correspond to the bubbles in the data.
The effectiveness of the density field-based visualization can be compared to the
visualization of the raw particles as seen in Fig. 4(b) which shows the density
field visualization for the MFiX-Exa Case 2. The corresponding particle field is
depicted in Fig. 3(b). Comparing Fig. 3(b) and Fig. 4(b), one can observe that
the density field shows the bubbles in the data that are hard to see from the
particle-based visualization when the number of particles is large.

The in situ generated particle density fields can also be used to perform
flexible post hoc bubble analysis. Since the size of the density fields is significantly
smaller compared to the raw particle fields, they can be loaded into ParaView and
analyzed and visualized interactively. In Fig. 5, we show one such demonstration
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where on the left rendering window, the density field is visualized using volume
rendering. On the right window, the segmented bubble features are shown. Here,
we first use a low-density value to threshold the density field and then apply the
connectivity filter so that each connected segment is identified as an individual
bubble feature.

4 Evaluation

We have tested the in situ pipeline on the Summit supercomputer [1], an IBM
system located at the Oak Ridge Leadership Computing Facility (OLCF). Each
compute node of Summit contains two IBM POWER9 processors, 512 GB of
DDR4 memory, 1.6 TB of non-volatile memory, and six NVIDIA Tesla V100
GPUs. We performed an initial evaluation of our in situ pipeline by running the
pipeline with two different test cases of MFiX-Exa. The first test case contains
around 4 million particles, which we call MFiX-Exa Case 1, and the second case
is a larger test case containing around 54 million particles. We denote the second
test case as MFiX-Exa Case 2. For each of these cases, we performed particle
rendering where the particles are colored with velocity magnitudes computed in
situ and also volume rendering of the particle density field. The density field is
first computed using a spatial histogram-based method as discussed before. In
Table 1, we provide the computational timings taken by the simulation and the
in situ methods. The renderings were done on GPUs and each MPI process was
assigned with 1 GPU. As these timings reflect the total time for the catalyst
script, they include the overhead due to data copying from AMReX to VTK
data structure and the communication time. Since the simulation data evolves
slowly over consecutive time steps and successive time steps are typically very
similar, we performed in situ analysis at every 5th time step. Note that, we are
reporting the initial performance of our in situ pipeline and we plan to run our
workflow on a much bigger case of MFiX-Exa, containing hundreds of millions of
particles, to conduct a full-fledged performance study in the future and further
optimize our code. We also plan to implement our density estimation filter as
a VTKm filter so that we can execute the code with GPU acceleration in the
upcoming exascale machines.

5 Conclusions

We have presented a ParaView Catalyst-based in situ analysis pipeline infras-
tructure for the ECP application MFiX-Exa. We demonstrate how the users
can use our in situ pipeline to perform in situ analysis and produce various
types of visualization artifacts. We believe that our in situ interface, which is
able to read AMReX particle data structure, is an important capability for the
domain scientists who can analyze and produce visualization of their data for
extreme-scale simulation test cases with minimal effort to verify and validate
their simulation and further improve it. In the future, we plan to deploy this
in situ analysis pipeline in the upcoming exascale supercomputers to analyze
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Table 1. In situ timings compared to the simulation timings for two different MFiX-
Exa simulation test cases.

Configuration
Avg. simulation
time per time
step (secs)

Avg. particle
rendering

time per time
step (secs)

Avg. density estimation
and rendering

time per
time step (secs)

MFiX-Exa Case 1
(∼4M particles)

256 MPI processes
with 1 GPU
per process

2.240 0.179 1.057

MFiX-Exa Case 2
(∼54M particles)

3072 MPI processes
with 1 GPU
per process

5.678 1.160 1.649

and visualize extreme-scale MFiX-Exa simulation data and also develop more
sophisticated in situ bubble detection algorithms.
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5. Atzori, M., Köpp, W., Chien, S.W.D., Massaro, D., Mallor, F., Peplinski, A.,
Rezaei, M., Jansson, N., Markidis, S., Vinuesa, R., Laure, E., Schlatter, P.,
Weinkauf, T.: In-situ visualization of large-scale turbulence simulations in nek5000
with paraview catalyst . https://doi.org/10.1007/s11227-021-03990-3

6. Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., Moreland,
K., O’Leary, P., Vishwanath, V., Whitlock, B., Bethel, E.W.: In situ methods,

https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://doi.org/10.1109/SC.2014.40
https://amrex-codes.github.io/amrex/index.html
https://amrex-codes.github.io/amrex/index.html
https://doi.org/10.1007/s11227-021-03990-3


In Situ Visual Analysis of Large Particle Fields 11

infrastructures, and applications on high performance computing platforms. Com-
puter Graphics Forum 35(3), 577–597 (2016). https://doi.org/10.1111/cgf.12930

7. Biswas, A., Ahrens, J.P., Dutta, S., Musser, J.M., Almgren, A.S., Turton, T.L.:
Feature analysis, tracking, and data reduction: An application to multiphase reac-
tor simulation mfix-exa for in-situ use case. Computing in Science & Engineering
23(01), 75–82 (jan 2021). https://doi.org/10.1109/MCSE.2020.3016927

8. Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho,
A.L.: In situ visualization and data analysis for turbidity cur-
rents simulation. Computers & Geosciences 110, 23–31 (2018).
https://doi.org/https://doi.org/10.1016/j.cageo.2017.09.013

9. Childs, H.: Data exploration at the exascale. Supercomputing frontiers and inno-
vations 2(3) (2015), http://superfri.org/superfri/article/view/78

10. Childs, H., Ahern, S.D., Ahrens, J., Bauer, A.C., Bennett, J., Bethel, E.W., Bre-
mer, P.T., Brugger, E., Cottam, J., Dorier, M., Dutta, S., Favre, J.M., Fogal,
T., Frey, S., Garth, C., Geveci, B., Godoy, W.F., Hansen, C.D., Harrison, C.,
Hentschel, B., Insley, J., Johnson, C.R., Klasky, S., Knoll, A., Kress, J., Larsen,
M., Lofstead, J., Ma, K.L., Malakar, P., Meredith, J., Moreland, K., Navrátil,
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