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Abstract As simulations move to exascale computing, the dominant data analysis
and visualization paradigm will shift from primarily post hoc processing to in situ
approaches in order tomeet I/O bandwidth constraints. One such approach is Cinema,
a flexible in situ visualization ecosystem.Cinema combines data extractswith viewers
and analysis capabilities to support in situ, post hoc and hybrid approaches for data
processing. With data extracts that include metadata, images, meshes, and other
data types, Cinema databases generated in situ are a central component of post hoc
analysis workflows. These workflows support visualization and exploration of the
data, verification and validation tasks, and leverage computer vision and statistical
techniques for post hoc analysis. This chapter describes the Cinema approach, the
database specification, and demonstrates its use through example workflows.
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Fig. 1 Cinema is a novel way to capture, store and interact with data extracts from a wide variety
of sources. It is well suited for hybrid in situ coupled with post hoc data workflows, and has been
integrated into the most common visualization and analysis applications in use at extreme scale.

1 Introduction

Data analysis and visualization workflows are traditionally based on a post-
processing model. Data is saved at regular intervals and then visualized post hoc
with a standard visualization application. With this model, data sizes – over all and
for a single time step – can be quite large. This impacts the amount of data that can be
saved, usually requiring significant temporal down-sampling, and limits the ability
of the scientist to effectively render and explore the data in a post hoc workflow.

As discussed in the introductory chapter, in situ is a system. Each component of
the system contributes in some way to solving the concurrency challenges of large
scale computing. The in situ infrastructures in Part II of the Introduction removes
the human-in-the-loop, moving analysis algorithms and visualization into the in situ
workflow. Data reduction techniques in Part III further downsize the data being saved
to disk.

One consequence of moving analysis algorithms and data reduction into the in
situ workflow is that the data output may change as a result of an in situ computation.
In particular, in situ workflows may result in the generation of small subsets of
data – data extracts. For example, if an algorithm finds an interesting feature at a
specific time and location, the algorithm may create a data extract that allows closer
inspection of a relevant portion of the data. That data extract could be a visualization,
a subset of the data, a statistical representation of the data, or some other form of
data extract.

In contrast to long-standing practice where a simulation outputs a standard data
format (which may be specific to that simulation), these data extracts can be widely
different from each other in scope (spatial dimensions, variables saved, mesh-based
vs image-based, etc.) and time. Thus, output from algorithm-driven in situ pipelines
can be a heterogeneous set of data extracts. A key component of the in situ system
is the ability to generate these data extracts and therefore complementary post hoc
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analysis tools and pipelines are needed that bring the human-in-the-loop back into
the system, enabling the domain scientist to generate scientific insights from these
reduced data extracts. This is the central problem that the Cinema project addresses.

Cinema provides a novel way of interacting with related sets of data extracts
produced in situ and the resultant smaller output size enables the possibility of higher
temporal resolution. This approach, first introduced in [2], is a way of capturing,
recording, analyzing and interacting with related sets of extracts from scientific data.
A Cinemaworkflow is based on a well-defined database for these extracts, as detailed
in the Cinema specification [10]. Cinema databases provide a very compact data
representation that can provide many of the benefits of interacting with extremely
large data, while also defining a flexible infrastructure for analyzing and interacting
with the data. Cinema databases work together with Cinema writers, Cinema viewers
and Cinema based analysis algorithms to form the Cinema ecosystem.

The goal of this chapter is to motivate the use of Cinema as part of an in situ
workflow and to describe it sufficiently so as to allow the interested reader to un-
derstand which aspects of the Cinema ecosystem best fit their needs. This will be
accomplished by a survey of Cinema functionality starting with an overview of the
Cinema ecosystem, Section 2. The Cinema database is described in Section 2.2 with
an overview of alternate data types in Section 2.5. The set of writers available for in
situ export of Cinema databases is discussed in Section 2.3. Standard viewers can be
found in Section 2.4 along with prototype work.

Analysis capabilities are discussed in Section 3, showcasing examples leveraging
computer vision techniques, Section 3.1, and statistical methods, Section 3.2. A
task-based workflow, typical for in situ production of Cinema databases, is described
in Section 4.

Although Cinema is a general approach to data capture and analysis applicable
to both experimental and simulated data, this chapter focuses on the application of
Cinema to scientific simulation data, related to the context of this book.

The Cinema ecosystem is constantly evolving and adding new functionality to
meet the needs of scientists. Throughout the paper, examples and references to
publications demonstrate how scientists are leveraging the Cinema ecosystem to
enable scientific insight. A full list of the many publications utilizing Cinema can be
found on the CinemaScience website [11].

2 The Cinema Ecosystem

Cinema is an ecosystem of capabilities organized around a database of extracts. The
Cinema ecosystem, shown in Figure 2, organizes material from various sources into
a database that associates data parameters with data extracts. A Cinema database
includes metadata about data written to permanent storage. These databases can
be written by any application, operated on by algorithms, and interactively viewed
with a set of viewers and viewer components. The simplicity and flexibility of the
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Fig. 2 Cinema is an ecosystem of capabilities organized around a database of extracts. This
includes metadata about data written to permanent storage. Most common is a database of images
that captures a set of rendered views of the data. These databases can be written by any application,
operated on by algorithms, and interactively viewed with a set of viewers and viewer components.
The simplicity and flexibility of the database means that it is easy to get started and take advantage
of some of the power of Cinema. (Versions of this image have been previously used in internal
ECP [14] documents and, for example, in [27] and [8].)

database means that it is quite easy to integrate and experiment with Cinema as an
in situ analysis workflow.

Cinema provides the following capabilities:

• A novel image-based data extract, the cinema composable image [10], which
provides interactive data exploration for extreme-scale data. Interactions include:
smoothly varying camera positions, so the user can interact with the data, the
ability to interactively compose images so that elements can be turned on and
off, and interactive post hoc recoloring of data to tune visualizations after the
simulation is complete. More details can be found in Section 2.1.

• Writers that extract data to a well-specified database format, discussed in Sec-
tion 2.2.

• Viewers that allow interactionwith data in amovie-like or interactive application-
like manner. This is shown in Section 2.4.

• Algorithms that query, analyze and filter sets of results in entirely new ways,
discussed in Section 3.

2.1 Simple Use Case: Cinema Image Databases

The application of Cinema as an image database approach is themost simple use case
of this ecosystem to illustrate its functionality. Image representations of extreme-size
simulations can be rendered as a projection of the simulation to a plane representing
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the location of a camera. For example, a user might render images from specific
camera positions for all time steps of the simulation. These images provide a compact
form by which to interact with the larger data sets. Cinema can then be used to
organize, and interact with these sets of images through its viewers. For example,
the simulation can be ‘rotated’ through a series of images captured at different
spatial locations. The progression of the simulation over time can be viewed through
images captured temporally. Figure 3 shows the results of exporting a Cinema image
database from ParaView and viewing the images with a Cinema viewer. Sliders in
the viewer allows users to rotate the data and scroll through time interactively.

The cinema composable image, an extension of rendered images, allows a viewer
to interactively compose elements of an image and recolor them post hoc. Therefore,
in addition to manipulating parameters such as camera position, a Cinema viewer
can also turn elements on and off, and interactively recolor images. Figure 4 shows
how different elements of a cinema composable image can be combined together
to provide a more complete picture of a data set while allowing components to be
viewed and hidden interactively.

The following sections of the chapter delvemore deeply into the database concept,
writers, and viewers that comprise the Cinema system.

2.2 The Cinema Database

At a high level, Cinema maps metadata to data extracts saved on disk or other
permanent storage. A Cinema database does not encode specific meaning in the
metatdata - that is left up to the application. This was a deliberate choice when
creating the specification, to retain simplicity at Cinema’s core, and allow flexibility
for user-written applications. For consistency, tools (viewers, writers) operate on
parameters and extracts across the ecosystem.

Cinema’s database specification provides simplicity and adaptability. Rows repre-
sent database entries, e.g. time steps in a simulation, and columns are the parameters
and data extracts available for each entry.

The minimal Cinema database is a directory that contains a required data.csv
file. Optional data files and directories can include data extracts such as images,
small mesh files, other CSV files, text files, or other relevant files. The specification
allows for other files to be present in the main directory, so that applications can
add additional information that core Cinema tools will ignore. Typically, each row
in a Cinema database maps a set of parameters to one or more data extracts. The
database specification, [10], contains full details of the current specification for the
interested user.
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Fig. 3 A Cinema web-based viewer showing a Cinema database of images from the Deep Water
Impact Ensemble Data Set [22] to provide interactive exploration of data. In these images, the user
operates a time-based slider to scroll through time steps of the simulation. At the top is an image
from the beginning and middle of an asteroid impact simulation. At the bottom is an image from
late in the simulation. Due to constraints on loading large data sets, this type of interaction would
be impossible with full sized data. This interaction is a powerful feature of Cinema, demonstrating
that even extreme-sized data can be explored interactively.

2.2.1 Fully Populated vs. Sparse Metadata

One possibility for a Cinema database is that the metadata has a fully populated
cross-product of values. This can be achieved by, for example, writing an image
from a set of camera positions for each time step. Table 1 is an example of a fully
populated metadata database. A data set such as shown in Figure 3 is an example
of a fully populated cross-product Cinema database that can be read by a Cinema
viewer designed to view a fully populated metadata database, such as Cinema:View.

A second option is that the columns are not full cross-products. This is a frequent
occurrence in scientific data sets, where all values for all parameters may not be
defined, and all combinations of the variables may not be defined. Consider this
example, in which the variable isovar is defined on time step 1, but not time
step 0. In this case, the Cinema database would look like the one in Table 2. The
Cinema ecosystem provides a set of standard viewers (Section 2.4) to handle either
case – sparse or full cross-product databases.
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Fig. 4 These images represent elements of a cinema composable image, demonstrating how these
can be composited by a Cinema viewer. The renderings show four clusters of roughly 5,000
highly turbulent regions of a computational fluid dynamics simulation. On the left is a composite
image showing all four regions together. On the right are the four separate regions, each stored
in a different component of a cinema composable image. Each of the clusters can be viewed
independently, but also, through the cinema composable image specification, they can be combined
together (composited) to show a complete picture of the data. These components can be interactively
composited, producing the effect of turning elements ’on’ and ’off’ in any view of the data. This
makes the resulting Cinema database highly interactive and explorable (Images courtesy of J.
Lukasczyk, Arizona State University).

time phi theta FILE
0 0 45 000.png
0 0 90 001.png
0 45 45 002.png
0 45 90 003.png
1 0 45 004.png
1 0 90 005.png
1 45 45 006.png
1 45 90 007.png

Table 1 This example data.csv file is for a Cinema database containing images for a simple
phi/theta camera move over two time steps. Time varies over [0,1], phi over [0,45] and theta
over [45,90], and the PNG images each have a unique filename.

2.3 Cinema Writers

As part of an in situ workflow, Cinema image database export is available in common
open source scientific visualization applications and infrastructures. ParaView [1]
provides post-processing Cinema export and in situ export is available through the
ParaView Catalyst [4, 15] in situ library. VisIt [9] also provides post-processing ex-
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time isovar isovalue FILE
0 000.png
1 001.png
2 temperature 100.0 002.png
3 temperature 150.0 003.png

Table 2 This is a sparse database, in which data values (columns) may be missing, valued as
Nan, or duplicates of other values. This is commonly seen in tables of values from, for example,
experimental scientific data sets. Cinema viewers are still able to view data sets like this, through
UI widgets other than continuous sliders.

port capability. Ascent [17], a newflyweight infrastructure under development as part
of the Exascale Computing Project [14], also contains Cinema export functionality.
As an example, theMPAS-Ocean [24] simulationwas instrumentedwith Catalyst’s in
situ capability to export a Cinema database [20]. ParaView was used post-processing
to generate Cinema databases from the Nyx [3] cosmology simulation, used in [8]
and as seen in Figure 5 and Figure 7.

Common to each of these export capabilities is the ability to choose a static view,
i.e., a single camera angle, or a phi-theta view with a user-specified number of
steps in (φ, θ). By default, the φ and θ steps are regularly spaced.

It is useful to note that Cinema databases can also be built post hoc. Simple Python
or bash scripts can be used to organize already existing images or output plots into
Cinema databases. While this chapter focuses on the in situ use of Cinema, Cinema
databases built post hoc have been used for both simulation and experimental data
sets. The Foresight framework [16] has used Cinema databases to allow scientists
to interactively explore the impact of compression on simulation data. Cinema has
also been used for a variety of experimental analysis workflows that output images.
These include shock physics experiments [21], experimental diffraction images [29],
and Bragg peak detection and tracking as discussed in [27].

Lastly, we note that most while most of the in situ writers work in a tightly
coupled mode, Cinema can also be implemented in a loosely coupled or in transit
environment such as described in various chapters in this book.

2.4 Cinema Viewers

A core concept in Cinema is the viewer — flexible applications that can read
in any specification-compliant Cinema database and enable analysis workflows.
Cinema includes three standard viewers, Cinema:Scope, Cinema:View and Cin-
ema:Explorer that will meet the needs of most users. There is also a library of
individual viewer components that can be used to build workflow-specific viewers.
This section overviews each of the standard viewers, providing example use cases.
The Cinema ecosystem constantly evolves to meet user needs and prototype viewer
development is also discussed.
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Fig. 5 CinemaScope is used to view a Nyx cosmology simulation showing the formation of dark
matter halos over time. The three sliders, timestep, phi, theta, are mapped to the mouse controls to
enable intuitive movement through the Cinema image database.

2.4.1 Cinema:Scope

Cinema:Scope is a cross-platform application built on Qt and C++. It has slider
controls mapped to the database parameters. By default, Cinema:Scope loads the
first set of images in a Cinema database and provides intuitive mouse controls that are
mapped to phi and theta. Themouse controlmapping and image set can be changed
within the application. Figure 5 shows an example of a cosmology simulation [3]
viewed within Cinema:Scope. The database parameters are time, phi, and theta
where phi and theta are mapped to the mouse controls.

This functionality is one of the attractive features of Cinema:Scope. It gives the
user the feel of using a full visualization application such as ParaView or VisIt but
without the overhead of rendering each image. For simulations where the domain
scientist already knows the visualizations needed, that rendering can be done as part
of the in situ workflow. Cinema:Scope provides the post hoc interactive exploratory
functionality needed by the scientist while avoiding the computationally expensive
part in the post hoc workflow.

2.4.2 Cinema:View

Cinema:View is a basic browser-based viewer used to visually explore images in
a Cinema database. Cinema:View is based on JavaScript and D3. It features slider
controls and can be used to view a single Cinema image database or multiple
databases with common parameter sets. Figure 6 uses Cinema:View to view three
ways to detect voids or bubbles in an MFiX-Exa [26] bubbling fluid bed simulation.
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Fig. 6 Cinema:View is used to view the detection of voids (bubbles) in an MFiX-Exa bubbling
fluid bed simulation. From left to right, a subset of the original data, downsampled to 5% of the
data (see the chapter on Sampling In situ); a density field is used to find bubbles; a bubble finding
algorithm using the density field calculation shows only the voids. The three views of the bubbling
bed simulation can be compared over time using the slider. Image size can also be changed to fit the
user browser. MFiX-Exa data courtesy of A. Almgren and J. Blaschke, Lawrence Berkeley National
Laboratory; bubble images courtesy of A. Biswas, Los Alamos National Laboratory.

2.4.3 Cinema:Explorer

Also browser-based using JavaScript and D3, Cinema:Explorer leverages parallel
coordinates to explore data within a Cinema database. The use of parallel coordinates
for Cinema databases was first explored in [31]. Parallel coordinates are a common
approach to exploring high dimensional data.

Cinema:Explorer includes a parallel coordinates view, an image spread view, and
a scatterplot view. The view panel information is linked so that a selection in the
parallel coordinates panel brings up the associated images in the image spread view
and the scatterplot. This can be used, for example, to identify outliers or explore
correlations in large data sets.

The screenshot in Figure 7 shows Cinema:Explorer being used to query a large
image database using the parallel coordinates interactive view. For this example, a
Nyx cosmology Cinema database has had computer vision algorithms applied to
generate image-based statistics. Cinema:Explorer displays the database parameters
and statistical quantities in parallel coordinates. Standard parallel coordinate tech-
niques can be used to hide/show axes or select ranges on the axes. In this example, the
user has selected images early in time and with low entropy. Cinema:Explorer shows
all images in the database that match this query. Cinema:Explorer allows scientists to
quickly view queries on data ranges across all samples extracted, making it possible
to explore and compare large sets of data very quickly.

This is a typical Cinema enabled workflow: saving parameters and data extracts
such as pre-rendered visualizations in situ, extending the analysis post hoc, and using
the viewer to select, query, and explore the information within the database.
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Fig. 7 In this image, Cinema:Explorer is used to query a large image database, using the parallel
coordinates interactive view. For this example, the Nyx cosmology Cinema database has had
computer vision algorithms applied to generate image-based statistics. Cinema:Explorer displays
the database parameters and statistical quantities in the parallel coordinates view. Standard parallel
coordinate techniques can be used to hide/show axes or to select ranges on the axes. Using the axes,
the user has selected images early in time and with low entropy. The results of the query can be
seen in the image spread view.

2.4.4 Jupyter-Based Viewers

Many simulation scientists use the Python scientific analysis stack and notebooks
are becoming a more common approach to the analysis workflow for simulations.
NERSC has a dedicated JupyterHub to connect notebooks to HPC resources. To
accommodate Python users, a prototype Jupyter notebook-based viewer is available at
https://github.org/cinemascience/cinema_jnc. Figure 8 shows a WarpX
[28] simulation of a plasma-driven accelerator in the Cinema:JNC viewer. Currently,
this has similar functionality to Cinema:View, allowing the user to use sliders to view
a Cinema database through time and spatial angles. This viewer could be included
in a Jupyter-based workflow, leveraging Python’s data analysis capabilities for post
hoc analysis. Including multiple data types in a Cinema database, as described
in Section 2.5, allows workflows that, for example, use Python/VTK [25] based
pipelines within a Jupyter notebook-based analysis framework.
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Fig. 8 Two views showing field streamlines in a WarpX plasma accelerator simulation. The proto-
type Jupyter notebook based viewer, Cinema:JNC, is used to explore the WarpX Cinema database.
An early time step is on the left, evolving to a later time step on the right. Cinema database courtesy
of R. Bujack, Los Alamos National Laboratory.

2.4.5 Cinema Components

In addition to the standard viewers, Cinema also has a library of components that
can be combined to create a viewer specific to the needs of the scientist.

These components include a parallel coordinates plot, image spread, scatter plot,
query generator, and glyph-style plots. An example use case of an analysis-specific
viewer built with individual components (beyond those used in Cinema:Explorer)
can be found in [29]. In addition to these components, users can develop and combine
new components as needed. Cinema:Bandit [21] is one such instance of a viewer
built for a specific scientific application.

2.5 Data Types Beyond Images

Cinema works on any data type and supports multiple data extracts and mixed data
types for each parameter set (row in the database). For example, an in situ analysis
could identify a specific feature of interest. The Cinema database export might save
both a visualization of that feature and a small VTK-based mesh containing that
feature. This is an effective way to downsample the data by not saving the full
simulation mesh. That VTK-based file is then included in the Cinema database,
associated with the same set of parameters (e.g., view angles and time) that identify
the corresponding image.

An example of multiple data types can be seen using the Cinema:Explorer viewer.
In Figure 9, a Cinema database of a simple sphere contains the visualization of the
sphere for different φ and θ values. Some of the rows also have an associated VTK or
PBD file. Clicking on file types brings up the vti or pbd data for interactive viewing
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Fig. 9 A simple sphere Cinema database demonstrates the multiple data types in Cinema:Explorer.
For each [φ-θ] set of parameters, there is an image. Additionally, some of the [φ-θ] parameter sets
have other data types such as a vtk file or pbd file. Clicking on the thumbnail for each extract (vtk
or pbd file) will bring up the data in a viewer for that specific data type, Figure 10.

Fig. 10 Different file types: ParaView pbd file on the left and a ParaView vti file on the right. These
are displayed in a modal view when selected by clicking on the file name in the Cinema:Explorer
image spread.

in a modal view, Figure 10. Rows where the vti or pbd datafile is not available have
an informational message displayed.

3 Analysis Algorithms

Asdiscussed in this chapter’s introduction,Cinema is a hybrid approach that produces
heterogeneous data extracts in situ. These extracts can become the input for post
hoc analysis workflows. The light-weight nature of the Cinema database approach
enables flexible real-time exploration. This exploration may be conducted through
the Cinema:View viewer, the parallel coordinates plot in Cinema:Explorer and in the
case of image databases with associated saved parameters, through computer vision
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and statistical algorithms applied to the images and saved data parameters. Large
image databases with several columns of associated numerical information can easily
be produced through the methods discussed in Section 2.3. Standard tools to help
users explore and understand these data products are an essential facet of the Cinema
ecosystem. Two examples of algorithms for Cinema image database exploration –
a computer vision framework and a set of statistical methods – illustrate how users
may employ such techniques for in-depth analysis.

As shown in Figure 2, the image-basedAnalysis Algorithms are part of an iterative
workflow. The results of analysis algorithms, either computer vision or the statistical
methods, are collated back into the Cinema database as additional images or columns
of numerical data. Therefore, a user who needs to compute a series of steps on their
data can accomplish this goal through a sequential set of commands.

It is important to note that when analyzing images, the format in which the image
is saved becomes highly pivotal. For RGB color-mapped images, the user must be
aware of the potential effects of the colormap on their data and subsequent post-
processing analyses. Alternatively, the user may opt to save their data as cinema
composable images, where the simulation data is directly projected into the 32-
bit pixels of the image. This allows for a more direct application of the Analysis
Algorithms to the underlying data.

3.1 Computer Vision Framework

There exists a wide body of image-based computer vision techniques that can be
exploited in a Cinema database workflow. However, a computer vision framework
for data analysis and visualization must ensure that each component of the frame-
work helps the user identify and and examine features that directly correspond to
attributes of the simulation. Therefore, the methods currently included in this frame-
work help to identify common physical properties of interest in scientific data. For
example, a gradient-based edge-detection algorithm is included to identify regions
with sharp discontinuities. An examination of the Western Boundary of the Gulf
Stream discussed in [27] is an example of an application of this edge-detection
technique.

Another capability of the computer vision framework is contour detection, to
locate closed regions at and above (or below) a given threshold, i.e., superlevel or
sublevel sets. These extracted features may then be matched temporally or spatially
based on attributes and metrics such as location, pixel intensities, area or derived
quantities such as Hu moments. Given a particular matching metric, these matched
features can be tracked temporally to identify events such as splits, merges, deaths
or births. An example of this computer vision based workflow is discussed below
and the interested reader can find further details in [6] and [27].
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Fig. 11 Visualization of eddy feature tracking in the Agulhas Retroflection Region of an MPAS-
Ocean Simulation. The computer vision framework includes a control panel (upper left, see Fig-
ure 12 for more detail) with sliders to select images and set algorithm parameters; visualization
panels for overview and zoomed display; and output information such as the eddy count (upper
right) and tracking chart (lower right). (Image is adapted from our previous work [6].)

Fig. 12 Close-up of the computer vision framework control panel. At the top are sliders for the
database parameters: time, theta, and phi. Underneath are algorithm parameters such as thresholds
and ranges. User interface options allow the user to customize the views. Brief overview of the
algorithm output is also included. (Image is adapted from our previous work [6].)

3.1.1 Case Study: MPAS-Ocean Eddy Tracking

A Cinema enabled computer vision workflow for eddy analysis is described in [6].
This is an example of a typical analysis workflow leveraging the Cinema ecosystem.
This system allows the user to identify mesoscale ocean eddies, track their movement
and visualize these results over time through count and tracking graphs. The input
to the application is a Cinema database of MPAS-Ocean floating point images, to
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which the feature analysis algorithms are applied. The Cinema database images have
the relevant physical variables, in this example, kinetic energy, embedded within the
images allowing the user access to the simulation data at the resolution of the saved
images.

An interface such as the one shown allows certain areas of domain expertise
to be inherently captured. What is considered an “eddy” is intuitively understood
by the scientist even though a rigorous mathematical definition of an eddy eludes
ocean scientists. The eddy tracking application, shown in Figure 11, allows the
user to select contour detection as the computer vision technique and flexibly set
thresholds to identify a set of eddies spatially. The application then tracks and creates
a timeline of eddy progression. To track big eddies or small eddies, to include weaker
eddies or only allow stronger eddies, and to determine over which region the eddy
analysis will occur are all actions enabled by the interface. The user can choose to
output a running count of the number of eddies found and a tracking graph that
indicates the death/birth/merge events in eddy formation (upper and lower right
of Figure 11, respectively). This combination of low-cost Cinema database images
and optimized computer vision algorithms enables an interface for scientists where
exploration of the data is possible in real-time. The real-time Cinema based approach
can be compared to mesh-based analysis methods such as geometric eddy detection
algorithms. Running those types of algorithms on large data sets requires far more
time, limiting the exploratory capabilities for the user.

3.2 Statistical Methods

Statistical tools in the Cinema ecosystem are another data analysis approach within a
Cinema workflow. Statistical tools are a ubiquitous choice for analysis of numerical
data. The data may be derived from a Cinema image database, obtained during in
situ processing, extracted from simulation data or added to the Cinema database
from external sources. cinema [12] is a command line python-based tool that allows
users to extract typical image properties such as mean, standard deviation, Shannon
entropy and joint entropy into numerical quantities added to the Cinema database.
Maack et al.[18] leveraged the Cinema framework to apply statistical metrics to find
features of interest.

Another approach enabled by Cinema is statistical change point detection (see
for example, [23] for a discussion of the concept of change point detection). Within
a physical system, change often denotes an interesting time step or event. Visually
scanning thousands of imagesmay be too time-intensive for a domain scientist to find
events of interest. Change point detection can be applied to properties of simulation
images to identify time steps or parametric values of interest. Both [7] and [5] are
examples of the application of change point detection within the body of Cinema
literature. The change point detection algorithm available as part of the Cinema
ecosystem, [13], allows the user to identify locations in a sequence of numbers
where change has occurred [19], as defined through a linear regression model.
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Fig. 13 Statistical change point detection for the ‘xdt’ parameter of the DeepWater Impact Ensem-
ble Data Set [22]. Change detection parametric values are: B = 4, α = 0.8, δ2 = 1. The change
points are noted in blue while the red lines drawn show the best fit line to the data between change
points.

In Figure 13, the Cinema statistical change point detection algorithm is applied to
a simulation of the Deep Water Impact Ensemble Data Set [22], the same simulation
shown in Figure 3. Instead of using images stored in a Cinema database, the parame-
ters in the database can be used for the statistical change point detection analysis. In
this analysis, a representative slice is taken in the z-plane through the center of the
data and the data values on that slice are averaged. This process is repeated for each
of the 476 saved time steps spanning about 50,000 steps in simulation time. Change
detection is then applied to a parameter of interest from the simulation parameters.
The selected parameter, xdt, is the x component of the velocity in each cell, in cen-
timeters per second. Change point detection is applied to this parameter over time to
identify points of interest.

During the first 25000 time units of the simulation, as the asteroid is descending
towards earth, there is very little activity and therefore, no change points detected.
Intense and frequent change points are seen as the asteroid strikes the ocean surface.
The algorithm identifies points in time where moderate to large amounts of change
occur. Even in the latter part of the simulation, regions of time with smaller amount
of change are still grouped together. The algorithm enables the flexibility to adjust
the change detection parameters so as to find smaller or larger amounts of change,
as desired by the user for their particular analysis and data set.

4 Task-Based Workflow Examples

To streamline in situ Cinema database production, a task-based workflow has been
developed that works in a distributed parallel environment. In this workflow, the user
first specifies the parameters that will be used to generate the Cinema database and
the range of values for each parameter. The user also can select if the parameter
ranges will be divided regularly or randomly while creating specific parameter
combinations. For example, the user can specify the ranges of the viewing angle
parameters (e.g., 240 ≤ φ ≤ 360 and 50 ≤ θ ≤ 100) and how many visualization
samples are needed from this range. Then the framework will sample the parameter
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Fig. 14 Visualization of a Cinema database produced by our task-based workflow using Asteroid
impact data set [22]. The database produced visualization of Temperature field using volume
visualization technique.

ranges either regularly or randomly as specified by the user to produce combinations
of (φ, θ) values. For each such (φ, θ) combination, a visualization extract will be
added to the Cinema database. The user can also specify the type of visualization
algorithm such as surface rendering or volume rendering that will be used to produce
the visualization data extracts.

In this workflow, a unit task is characterized as the production of a visualization
extract for a specific parameter combination (phi, theta, etc). Since the visualization
and rendering in parameter space is high-dimensional in nature, and can be quite
large, a through exploration of such space while producing a Cinema database may
need a very large number of such unit tasks. Therefore, the task-based workflow
first generates the list of tasks that will be needed in order to produce the complete
Cinema database as specified by the user. Those tasks are then distributed among
the different compute nodes in a high performance cluster. Finally, the tasks are
executed in parallel. At the end of the task-based workflow, a Cinema database is
created with all the visualization extracts. Finally, the workflow installs a Cinema
database viewer customized for the resultant Cinema database so that the results
can be readily explored interactively. Figure 14 shows an example Cinema database
generated using this task-based workflow and viewed using the Cinema:Explorer
viewer, Section 2.4.

The current version of the task-based workflow is implemented in Python using
the mpi4py library for distributed processing. The visualizations are produced using
ParaView [1] in off-screen rendering mode. User control is through a JSON file
specifying the range of parameters and types of visualizations needed. The task-
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Fig. 15 Strong scaling study of Cinema’s task-based workflow for (left) the asteroid impact data
set and (right) the Hurricane Isabel data set.

based workflow will then generate the list of tasks and execute them in parallel on
the HPC machine.

Performance testing of the task-basedworkflowwas done on the high performance
cluster (HPC) Snow, an Institutional Computing (IC) Commodity Technology Sys-
tem Phase I cluster (CTS-1) located at Los Alamos National Laboratory. Snow has
two integrated Scalable Units (SU) and each unit forms a building-block to assemble
the CTS-1 cluster. Each SU has 184 compute nodes plus other nodes for services,
I/O, etc. Each node in the SU has 36 Processor cores: 2 x (E5 2695v4 2.1GHz,
18 cores, 45MB cache), 128GB Memory, and Intel OmniPath OP HFI, Single-port,
PCIe-gen3 x16 Network Interconnect.

In Figure 15, the result of a strong scaling study of the task-based workflow
is shown for two sets of data: the asteroid impact data [22] and Hurricane Isabel
data [30]. The asteroid data used volume rendering for visualization and the Hurri-
cane Isabel data used an isocontour visualization technique. Each test case consisted
of 10000 tasks and the number of processing cores were varied from 32 to 1024.
Since the tasks were distributed among different processing nodes and the tasks are
independent, it can be observed that with increased number of processing cores, the
computation time goes down and the workflow scales as expected for both the data
sets. This study demonstrates the practicality of a task-based workflow for in situ
generation of image-based Cinema databases.

5 Conclusion

Cinema provides a powerful ecosystem for extracting, storing and interacting with
scientific and experimental data at any scale – from small tables of data to extreme-
scale simulations running on the largest supercomputers. As an open data definition,
a Cinema database is a data set that any application can read and write, making
it simple to start using Cinema, and adding capabilities as needed. In contrast to
monolithic applications, Cinema provides an opportunity to participate by re-using
small components from open source libraries. Cinema enabled data analysis and
visualizationworkflows have been used across awide range of data. Already included
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in many standard applications and frameworks for large scale science, Cinema is a
good option for experimentation or production systems for complex scientific data
analysis.
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