
A Color Edge Detection Algorithm in RGB Color Space

Soumya Dutta
Department of Electronics and Communication

Netaji Subhash Engineering College
Kolkata - 700152, India

soumya.nsec@gmail.com

Bidyut B. Chaudhuri
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
Kolkata - 700108, India

bbc@isical.ac.in

Abstract— Edge detection is one of the most commonly used
operations in image processing and pattern recognition, the
reason for this is that edges form the outline of an object. An
edge is the boundary between an object and the background,
and indicates the boundary between overlapping objects. This
means that if the edges in an image can be identified
accurately, all of the objects can be located and basic
properties such as area, perimeter, and shape can be
measured. Since computer vision involves the identification
and classification of objects in an image, edge detection is an
essential tool. Efficient and accurate edge detection will lead to
increase the performance of subsequent image processing
techniques, including image segmentation, object-based image
coding, and image retrieval. A color image edge detection
algorithm is proposed in this paper. Average maximum color
difference value is used to predict the optimum threshold value
for a color image and thinning technique is applied to extract
proper edges. The proposed method is applied over large
database of color images both synthetic and real life images
and performance of the algorithm is evident from the results
and is comparable with other edge detection algorithms.

Keywords-color edge detection; color difference calculation
in RGB vector field; edge thinning; smoothing by adaptive
median filter

I. INTRODUCTION
Edge detector is one of the most important tools in

computer vision. The edge detection process serves to
simplify the analysis of images by drastically reducing the
amount of data to be processed, while at the same time
preserving useful structural information about object
boundaries [1]. Edge detection in color image is far more
challenging task than gray scale images as color space is
considered as a vector space. Almost 90% of edge
information in a color image can be found in the
corresponding grayscale image. However, the remaining
10% can still be vital in certain computer vision tasks. [2].
Furthermore human perception of color image is more
enriched than an achromatic picture [3]. Several color
models are present such as RGB color model, YUV model,
CMY color model, CMYK color model, HIS color model
[4].

One of the earliest color edge detectors is proposed by
Navatia. The image data is transformed to luminance and
two chrominance components and Huckel’s edge detector is
used to find the edge map in each individual component
independently, except for the constraint of having the same

orientation [3]. Shiozaki proposed a method on the basis of
entropy calculation [5]. In 1999 M. A. Ruzon and Carlo
Tomasi proposed a method of detecting color edges with
compass operator [6] and in 2001 with color distribution [9].
They considered a disc at each pixel location. The disc was
divided into several pairs of opposite semi discs by rotating
the diameter over 180o with an interval of 15o. The color
distribution of the pixels in each such semi disc was found
after doing vector quantization. The distance between two
semi discs generated by a single diameter was the distance
between their color distributions. The distance between two
distributions was found using the Earth Mover’s Distance
(EMD). The edge magnitude at the pixel was the maximum
distance among all the distances found between each pair of
opposite semi discs created rotating the diameter. Cumani
proposed an extension of second directional derivative
approach to color images [7]. In this paper a method is
discussed to detect edges in color images with a threshold
process that automatically selects a value for a given picture
and after that a thinning technique is applied to generate edge
map.

II. STEPS OF PROPOSED METHOD
 The proposed method consists of four steps. At first, the
image is smoothed by median filter to suppress unwanted
noise in the image. Secondly, maximum directional
differences of sum of gray values (Red+Green+Blue) are
calculated for each pixel. In the third step, image is
thresholded with a single threshold value and finally the
detected edges are thinned to get the proper edge map.

A. Smoothing by Adaptive Mudian filter
 A traditional median filter is based upon moving a

window over an image and computing the output pixel as the
median of the gray values within the input window. If the
window is J x K in size we can order the J*K pixels in gray
level values from smallest to largest. If J*K is odd then the
median will be the (J*K+1)/2 entry in the list of ordered gray
values. Note that the value selected will be exactly equal to
one of the existing gray values so that no round off error will
be involved if we want to work exclusively with integer gray
values. Median filters are quite popular because, for certain
random types of noise, they provide excellent noise
reduction capabilities, with considerably less blurring than
linear smoothing filters of similar size which helps to
preserve edges. In the proposed method we have used an
adaptive median filter. One main reason for using adaptive

2009 International Conference on Advances in Recent Technologies in Communication and Computing2009 International Conference on Advances in Recent Technologies in Communication and Computing2009 International Conference on Advances in Recent Technologies in Communication and Computing

median filter is that it seeks to preserve detail of the image
while smoothing the non-impulse noise, something that the
“traditional” median filter does not do [4].

The working of an adaptive median filter is divided into
two levels and as follows:

Level A. A1 = Zmed - Zmin
A2 = Zmed - Zmax
If A1 > 0 AND A2 < 0, Go to Level B
Else increase the window size
If Sxy < Smax repeat Level A
Else output Zxy

 Level B. B1 = Zxy - Zmin
B2 = Zxy - Zmax
If B1 > 0 AND B2 < 0, output Zxy
Else output Zmed

where Zxy = gray value at coordinate (x,y), Zmax =

maximum gray value, Zmin = minimum gray value, Sxy =
window size, Smax = maximum allowed window size.
Maximum allowed window size for our experiment was
9X9 starting from 3X3 window.

B. Directional Color Difference Calculation
 In the proposed method, color image is analyzed from
RGB color space point of view. Each pixel in the image
consists of three color channels known as RGB components.
The range of values of each of this components lies within 0
to 255. Edges exist in a color image where abrupt changes
of RGB values occur. So to detect proper edges, first the
abrupt color differences in an image must be pointed out.
Generally an edge can exist in four directions and they are
0o, 90o, 45o and 135o. To reduce the computational
overhead we have calculated a transformed value for each
pixel which converts three component valued pixels into a
single valued attribute. This transformation is simply a
weighted addition of three components.

Pixel(i,j)=2*red(i,j)+3*green(i,j)+4*blue(i,j) (1)

Reason of multiplying the weights with the color channels is
discussed below:

 Figure 1. Checker box color image

For images like figure 1, checker box we can see that the
image consists of three fundamental colors. So if we
compute the sum of three channels for each pixel it will be
255. Because, for the red regions, the value of the red
component is 255 and values of green and blue components
are 0. Similarly, for blue regions only the value of the blue
component will be 255 and red, green pixels will be 0. Same
problem will arise for green regions. Using the weighted
sum technique we can easily overcome this type of problem

and can calculate exact color differences. So to calculate
directional color differences we need four masks:

Figure 2. (a) A[3][3], (b)B[3][3], (c) C[3][3], (d) D[3][3] Four 3X3

directional masks are applied to the image smoothed with
adaptive median filter

Figure 3. 3X3 Mask with coordinates

All four masks shown in figure 2 are moved over the
transformed pixel values one by one to calculate the color
differences in four directions. Mask A calculates horizontal
color differences; mask B calculates vertical differences,
mask C in 45o direction and mask D in 135o direction
considering f(i+1,j+1) as the center pixel. The mathematical
model for masking is presented below:

 row col
 (f(i+1,j+1)| 0o) = (2)
 i=0 j=0
 [|{2*R(i+1,j))+3*G(i+1,j)+4*B(i+1,j)}*A(i+1,j) -
 {2*R (i+1,j+2)+3*G(i+1,j+2)+4*B(i+1,j+2)}*A (i+1,j+2)|]

 row col
 (f(i+1,j+1)| 90o) = (3)

i=0 j=0
 [|{2*R(i,j+1))+3*G(i,j+1)+4*B(i,j+1)}*B(i,j+1) -
 {2*R (i+2,j+1)+3*G(i+2,j+1)+4*B(i+2,j+1)}*B (i+2,j+1)|]

row col

 (f(i+1,j+1) | 135o) = (4)
 i=0 j=0

 [|{2*R(i,j))+3*G(i,j)+4*B(i,j)}*C(i,j) -
 {2*R (i+2,j+2)+3*G(i+2,j+2)+4*B(i+2,j+2)}*C (i+2,j+2)|]

 row col
 (f(i+1,j+1) | 45o) = (5)
 i=0 j=0
 [|{2*R(i+2,j))+3*G(i+2,j)+4*B(i+2,j)}*D(i+2,j) -
 {2*R (i,j+2)+3*G(i,j+2)+4*B(i,j+2)}*D (i,j+2)|]

Considering each pixel at the centre of the mask the
maximum directional color difference is calculated.

(f (i+1,j+1) | max) = max ((f (i+1,j+1) | 0o),(f (i+1,j+1)
|90o),(f(i+1,j+1)|135o),(f (i+1,j+1) | 45o)) (6)

C. Threshold Technique
 Threshold technique is very important task in edge
detection algorithms. The accuracy of an algorithm is
dependent on the choice of threshold parameters. One of the
foremost criteria of thresholding is that the program should
be efficient enough to automatically compute the optimum
threshold parameter. The criteria of selection of a parameter
for a given image are that the resultant edge map should
satisfy the following [8]:

1. It should contain most of the prominent edges;
2. It should not contain too much spurious edges;
3. It should be meaningful and visibly pleasing;

The proposed scheme suggests a method of parameter
selection that works satisfactorily on various types of
images. We have already calculated the maximum color
difference (f (i+1,j+1) | max) for each pixel. Next the
average value of the maximum color difference is
computed:
 row col
t = (f|avg)= [f (i,j) / (row*col)] (7)
 i=0 j=0

The proposed method uses single threshold value T.
There are several ways to obtain a fixed parameter value. A
very simple way is to observe the edge maps for a set of
selected images and take that value which is producing
acceptable edge maps for all the selected images [8]. When
such an experiment is done over more than 50 selected
different kinds of images it produced acceptable edge maps
at 1.2t. Thus the threshold value is set at T=1.2t.

C. Edge thinning
 Edge map produced in this way contains thick edges. So
a thinning technique is applied to create more thin edges
which will be more accurate and visibly soothing. Two 3X3
masks are applied in thinning operation.

Figure 1. Thinning masks

Two masks as shown in figure 4 are used to create thin
edges. These two masks are moved over the edge image
produced after thresholding. Left one works in the horizontal
direction and the right one works in the vertical direction.
This procedure creates thin pixel edge response by
suppressing a thick edge response from both sides (vertically
or horizontally) and eventually keeps thin edge response.
Effect of the thinning masks is clearly observable from the
figures given below:

Figure 2. (a) Sand image, (b) multi pixel thick edge map after
threshold, (c) final edge map after using thinning masks

Figure 3. Steps of the proposed method

III. RESULTS AND COMPARISONS
 Comparisons with several existing methods have been
made to show the efficacy of the proposed method. Here we
have considered the block image for comparison. Edge
maps produced with Sobel operator, Laplace operator,
Mexican hat operator, Cumani operator with different
parameters, and finally with the proposed method are
shown. It clearly shows that the output of the proposed
method is easily comparable and in some cases better than
the existing methods.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 7. (a) Original block image, (b) gray image, (c) result of Sobel
operator, (d)result with Laplace operator, (e) result with Mexican hat

operator(=1.0), (f) result with Cumani operator with Gaussian mask (=
0.5), (g) result with Cumani operator with (=1.0), (h) Cumani operator with
(= 1.0) applied to the intensity block image, (i) result of proposed method

with T=1.2t.

 Undoubtedly, as the above results demonstrate, the
proposed method performed better than Sobel operator,
Laplace operator, Mexican hat operator. In figure 7.(h)
Cumani operator is applied to the intensity block image (=
1.0) produced good result. Proposed method in figure 7.(i)
produced satisfactory output with less spurious edges than
others with T=1.2t and contains most of the important
edges.

Figure 8. (a) Original pepper image, (b) proposed method output with
T=1.2t, (c) openCV canny edge detector (low=70, high=120)

 Figure 8.(a) is the pepper image, 8.(b) is the result is the
proposed method and 8.(c) is the output of openCV canny
edge detector with low=70 and high=120. This comparison
clearly shows that the proposed method produces clear edge
map with good continuity and easily comparable with
famous canny edge detector.

IV. ACCURACY ANALYSIS OF PROPOSED METHOD
 Here we have presented a qualitative method of
accuracy analysis of the proposed method with the openCV
canny edge detector. The accuracy of an edge detector can
be measured with respect to another standard method by
comparing the edge locations detected. For simplicity of
analysis, we have selected a synthetic color image of
dimension 139X157. Two vertical edges exist in the image
one at 50th pixel location and another at 100th pixel location.

Figure 9. (a) Original image (139X157), (b) edge map by proposed method,

(c) edge map by openCV canny edge detector

 We have selected 50th row and plotted combined pixel
values following equation 1, moving horizontally through
the image shown in figure 9.(a) Also we have plotted the
detected edge locations for both proposed and canny edge
detector.

Figure 10. (a) Plot of proposed method, (b) Plot of openCV canny edge
detector

 Comparing figure 10.(a) and 10.(b) it is evident that the
proposed method detects proper edges at proper location
and also no false edge is detected.

V. CONCLUSION AND FUTURE WORK
 The proposed method is tested on different images. It
produced stable and fairly good results. Consistent
acceptable outputs over different kinds of real life images
have proved robustness of the presented scheme. Thus, the
proposed method may be handy for any computer vision
task where extraction of edge maps is required for a large
set of images for feature extraction or for any other work.
Our next venture will be comparing those algorithms with
the proposed one and analyze the performance on the basis
of parameters like computing time, execution complexity
and accuracy of the system output in presence of noise.

REFERENCES

[1] J. F. Canny, .A computational approach to edge detection,. IEEE
Trans.Pattern Anal. Machine Intell., vol. 8, no. 6, pp. 679.698,
Nov. 1986.

[2] C. L. Novak and S. A. Shafer, “Color edge detection,” in Proc.
DARPA Image Understanding Workshop, 1987, pp. 35–37.

[3] R. Nevatia, “A color edge detector and its use in scene
segmentation,” IEEE Trans. Syst., Man, Cybern., vol. SMC-7,
no. 11, pp. 820–826, Nov. 1977.

[4] Rafael C. Gonzalez, Richard E. Woods, Digital Image
Processing, Second Edition.

[5] A. Shiozaki, “Edge extraction using entropy operator,” Computer
Vis.,Graph., Image Process., vol. 36, no. 1, pp. 1–9, Oct. 1986.

[6] M. A. Ruzon and C. Tomasi, “Color edge detection with
compass operator,” in Proc. IEEE Conf. Computer Vision
Pattern Recognition, Jun. 1999, vol. 2, pp. 160–166.

[7] A. Cumani, “Edge detection in multispectral images,” CVGIP:
Graph. Models Image Process, vol. 53, no. 1, pp. 40–51, Jan.
1991.

[8] S. K. Naik and C. A. Murthy, “Standardization of Edge
Magnitude in Color Images,” IEEE Trans. Image processing,
vol. 15, no. 9, Sept. 2006.

[9] M. A. Ruzon and C. Tomasi, “Edge, junction, and corner
detection using color distributions,” IEEE Trans. Pattern Anal.
Mach. Intell., vol.23, no. 11, pp. 1281–1295, Nov. 2001.00X.

