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ABSTRACT
Recent advancements in high-performance computing have en-
abled scientists to model various scientific phenomena in great
detail. However, the analysis and visualization of the output data
from such large-scale simulations are posing significant challenges
due to their excessive size and disk I/O bottlenecks. One viable
solution to this problem is to create a sub-sampled dataset which
is able to preserve the important information of the data and also
is significantly smaller in size compared to the raw data. Creating
an in situ workflow for generating such intelligently sub-sampled
datasets is of prime importance for such simulations. In this work,
we propose an information-driven data sampling technique and
compare it with two well-known sampling methods to demonstrate
the superiority of the proposed method. The in situ performance
of the proposed method is evaluated by applying it to the Nyx Cos-
mology simulation. We compare and contrast the performance of
these various sampling algorithms and provide a holistic view of all
the methods so that the scientists can choose appropriate sampling
schemes based on their analysis requirements.
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1 INTRODUCTION
With modern day supercomputers and their immense compute ca-
pabilities, large-scale datasets can now be generated in the order of
Gigabytes to Petabytes with very high spatial and temporal reso-
lutions. As has been well documented, the disk I/O capabilities of
these machines are lagging behind making it impossible to store
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the full resolution of the data. With the current drive towards the
Exascale (1018 flops) infrastructures, the disparity between what
can be generated and what can be stored has increased significantly.
Apart fromwhat can be stored to the disk, another important aspect
is what sized data the domain scientists would want to carry with
them for post-processing and exploration. With Petabytes to poten-
tially Exabytes of data to explore, post-processing full resolution
datasets will soon become prohibitive.

Sub-sampling of datasets for data downsizing has been a popular
approach for addressing the aforementioned issues. The applica-
tion of several well-known in situ sampling methods exist in recent
literature, e.g., stratified random sampling [24], bitmap indexing
[20, 22], adaptive sampling [17] etc. Although these proposed meth-
ods have liberated the burden of post-processing the raw data
to some extent, with the Exascale machines on the horizon, very
soon we will be needing very low sampling rates (e.g., 1% to 0.1%
or less) for the data storage. These existing sampling algorithms
are not fully geared towards such requirements as they primarily
assume equal importance to all the data values. Since not all re-
gions of a dataset are equally interesting to the scientists, to be
more effective in the sampling scenario, novel data-driven sampling
methods are required. In [17], although the authors provided an
importance-driven data reduction scheme, the importance function
was assumed to be known. Instead, for wider applicability of an
in situ sampling algorithm, it should be as generic as possible by
deriving the importance function from the data itself such that it
can preserve the important features at very low sampling rates.

In this work, we propose a new in situ information-driven sam-
pling technique that can be applied across different scientific fea-
tures and is built upon a generic notion of information theory.
The proposed sampling scheme aims at maximizing the informa-
tion content in the sub-sampled data. Using the basic information
theoretic ideas of entropy maximization, our proposed sampling
method creates a novel importance metric that generally priori-
tizes the rare data values of high importance [7]. We compare and
contrast our sampling scheme with regular and stratified random
sampling schemes to highlight the feature preserving capability
of the proposed method along with an in situ performance study
demonstrating it’s in situ applicability for large-scale simulations.

Our contributions in this work are as follows:

• We propose a novel information-driven sampling scheme
for down-sampling regular grid data in situ that preserves
the important features of the data.
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• We create an in situ framework for the Nyx Cosmology
simulations with different sampling methods and show the
efficacy of our proposed method.

2 RELATEDWORKS
Due to the recent necessity of in situ techniques for large-scale sim-
ulation data analysis, several generic in situ capable infrastructures
have been developed which add in situ functionality into existing
visualization frameworks [10, 13, 14, 21, 23]. Besides directly vi-
sualizing the data in situ, some researchers have also developed
methods that produce in situ data summaries in various forms. The
primary goal of such summary data is to use the reduced data for
flexible post-hoc feature analysis [6]. A stratified random sampling-
based method for interactive visualization of cosmology particle
data was proposed by Woodring et al. [24]. For unstructured mesh,
a zero copy in situ data structure was introduced in [25]. In another
work, Ahrens et al. used an in situ image-based approach called
Cinema [1] for flexible image-based post-hoc feature analysis. In-
stead of sampling data points for summarization, Cinema samples
rendered data images across various visualization dimensions so
that an image database can be generated for effective visual explo-
ration. In situ distribution-based data reduction techniques were
developed by Dutta et al. [8, 9]. An in situ analysis-driven data
partitioning and representative sample selection was done in [17].
Data sampling based on bitmap indexing was proposed by Su et al.
in [20]. Recently, Wei et al. [22] proposed an in situ data sampling
approach which extended traditional stratified random sampling
using bitmap indexing-based compressed data representation. For
a more comprehensive view of the in situ data analysis techniques,
please refer to the state-of-the-art report [3].

While sampling data points for producing visualization, Park
et al. [18] proposed a technique which samples only a very small
fraction of data for producing an accurate visualization. In the
context of scatter and map plots, Park et al. designed a loss function
which maximizes the visual fidelity of the scatter and map plots.
However, the scope of this work is only limited to two such specific
types of plots and the loss function proposed cannot guarantee high-
quality samplings for producing general purpose visualizations. In
another work, to improve upon random sampling for visualization,
Nguyen and Song [16] proposed a centrality clustering based data
sampling scheme. In contrast, we aim to propose a more generic
in situ sampling scheme which can be used to generate a down-
sampled data set that can produce visual representations of the data
where the important features are preserved. Several researchers
in the past have used information theory driven approaches for
performing sampling of data sets. The primary goal of these bodies
of works [5, 12, 19] was to select a subset of data which is most
informative about the complete data set through maximizing the
entropy of the selected subset. In this work, following the similar
principle of information theory, we propose a scheme of sampling
for selecting a set of informative data subset which preserves the
important features in the data.

Figure 1: Schematic depiction of the proposed system for
information-driven adaptive in situ sampling of the large
simulations.

(a) Original data histogram (b) After entropy maximiza-
tion

(c) Acceptance histogram

Figure 2: Illustration of our proposed information-driven
sampling method via entropy maximization. a) histogram
of original data points, b) histogram of the sampled data
where the entropy of resulting histogram is maximized c)
Acceptance histogram showing the probability of the values
of each bin getting accepted after sampling

3 IN SITU SAMPLING METHODS
3.1 Overview
For handling very large simulations, as opposed to the existing post-
processing workflows that store the complete dataset, we propose
in situ data-adaptive sampling method for effective data reduction.
A schematic diagram of the proposed workflow is shown in Figure 1
where the in situ workflow depicts the information-driven sampling
that maximizes the information gained from the sampled data and
also preserves features of the datasets. For comparison purposes,
we have also implemented the popular stratified random sampling
[24], and regular sampling. We have integrated these methods into
an in situ framework for the Nyx [2] cosmology simulation. Nyx
is a massively-parallel, compressible hydrodynamics simulation
framework that simulates the cosmos at large scales. Below we
provide the details of our proposed information-driven sampling
method and discuss about how it can be applied in situ.

3.2 Information-Driven Sampling
The aforementioned approaches (Stratified random and Regular
sampling) assume that all samples are equally important and the
resulting distribution of the sampled data generally remain similar
to that of the original data distribution. However, generally for
most of the scientific datasets, not all the data values are equally
important to the domain scientists. Therefore, based on the no-
tion that the rare data values are generally more important (fore-
ground) than the frequently occurring data values (likely to be
background), our proposed sampling scheme derives its core idea
from the well-accepted field of information theory. In information
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theory, entropy H is a measure of information content [7] of a ran-
dom variable X and it is defined as: H (X ) = −∑

x ∈X P(x) log2 P(x),
where P(x) is the probability of occurrence of x , with x ∈ X . The
principle of maximum entropy is built on top of the information
content of a random variable and it states that the maximum en-
tropy state of a random variable is the best representation when no
other information is available [11]. As a generic formulation of an
information-driven sampling technique, we apply this idea in situ.
Assuming the normalized histogram of a data variable represents its
probability distribution function, we formulate a sampling strategy
that maximizes the data entropy after it is sampled along with the
assumption that the rare data values to be more important (i.e.,
the data values with low occurrence probability will have a higher
chance of getting selected). Since a uniform distribution has the
highest entropy, our proposed sampling algorithm tries to accept
data values in such a way that they are well distributed across the
histogram bins.

An example of this is shown in Figure 2. In this case, we have
taken 2000 randomly generated samples from a Gaussian distribu-
tion ( mean=0.0, standard deviation = 0.1) and the corresponding
histogram is shown in Figure 2(a). This data has an entropy of 3.9
bits (using 24 bins). Now, if we are going to keep 20% of the original
data, then use of our entropy maximization-based sampling scheme
will result in a sampled dataset with a histogram as shown in Figure
2(b). This sampled data has an entropy of 4.45 bits and as can be
proven, for the given input histogram of original data [Figure 2(a)]
and given the X samples to be drawn without replacement from
that data, no other histogram is possible that has higher entropy.

Now, if we define an acceptance histogram as a histogram where
the x-axis represents the data values and the y-axis is the probability
of getting selected for the values falling into that bin,[e.g., Figure
2(c)] then it reveals that for entropy maximization, the data values
which are rare in the original dataset (i.e., low count in the original
histogram), will be given higher priority in the sampling process.
Conversely, the frequently occurring data values (which often rep-
resent background or less important regions in the dataset), will
have a much lower probability of acceptance. For our application,
this generic method works quite well in preserving the important
regions (features) of the data compared to the other two existing
popular methods discussed above.

Starting from a regular grid dataset, this sampling method pro-
duces a particle dataset where for each particle, its location and den-
sity value is stored (similar to stratified sampling). On the contrary,
the regular sampling method only needs to store the values since
it produces regular grid data after sampling; i.e., given the same
storage constraint, regular grid data can save 3× more data, but as
we show below and in the next section, our proposed method still
out-performs the regular and stratified random sampling method
in preserving the features.

An example of the proposed method is shown in Figure 3 where
the Hurricane Isabel dataset (for data description, visit: http://
sciviscontest-staging.ieeevis.org/2004/data.html) is used for demon-
stration purposes. The most important feature of this dataset is the
location and shape of the hurricane eye (e.g., Figure 3(a)) in the
Pressure field. Using the Pressure field at time step 25, we applied
the stratified random and our sampling schemes with a sampling
ratio of 0.5% and regular sampling at 1.5% (since regular sampling

Figure 3: Sampling results from Isabel Hurricane dataset. a)
original data b) zoomed in view of the feature (hurricane
eye) region. c) reconstruction using our sampling method
(sampling ratio 0.5%). d) reconstruction using random sam-
pling method (sampling ratio 0.5%). e) reconstruction using
regular sampling method (sampling ratio 1.5%).

Input: Sim generated data at each time step
Output: Acceptance histogram
nk = samples to be taken from full data
N = total points from full data
nbins = number of bins
nsamps = nk ÷ nbins : samples to be taken from each bin
remaining-samples = N
H = CreateHistogram(Data,nbins)
count,bin-edges = SortBinsAccordingToTheirCount(H)
while not all bins are visited do

i=0;
if count[i] < nsamps then

samples-taken = count[i];
else

samples-taken = nsamps ;
end
Pi = samples-taken ÷ count[i]
remaining-samples = remaining-samples - samples-taken
remaining-bins = nbins - i
nsamps = remaining-samples ÷ remaining-bins
i=i+1;

end
Use Pi s as the probabilities for the corresponding bins of the
acceptance histogram
Algorithm 1: Creation of Acceptance Histogram In Situ

does not need to store the locations of samples). For comparison
with the original data, we have reconstructed 3D volumes from
the samples and applied the same color-map and transfer function
for visualization. As can be clearly observed, given the original
data in Figure 3, our proposed method (in Figure 3(c)) produces the
closest representation compared to stratified random sampling (Fig-
ure 3(d)) and regular sampling (Figure 3(e)) given the same storage
constraint.

3.3 Algorithm Details and Scalable
Implementation

For in situ implementation of our proposed sampling method, the
first stage consists of the computation of a data histogram. Given the
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(a) (b) (c)

Figure 4: Volume visualization of Sampling results (sam-
pling ratio 1%) from Nyx simulation. a) Original data and
zoomed into one feature region. b) Reconstruction using
our samplingmethod. c) Reconstruction using stratified ran-
dom sampling method.

in situ scenario, the data is generally distributed across processors
and construction of global data histogram is performed using MPI-
based communication across processors. This is scalable since each
processor will compute its local histogram using the global bounds
and then these local histogram will be added up in a MPI_Reduce
method.

The next stage is the construction of an acceptance histogram
based on this global histogram. To maximize entropy, the goal
is to generate a near-uniform distribution from the samples. To
achieve that, we first represent the histogram as a collection of
tuples of count and bin ids. Next, we sort the histogram based on
their counts in an ascending order. Since we know the total number
of samples (nk ) we need to select given a sampling rate and also the
total number of bins (nbins), the ideal uniform distribution would
have nsamps samples where nsamps = nk/nbins . If every bin in
the original histogram had count value more than nsamps , then our
target histogram would have nbins bins with counts nsamps . This
would maximize the entropy by generating a uniform distribution.
Since not all bins of the original histogram may have count value
more than nsamps , the target histogram will need to accommodate
for this. The count of the i-th bin of the target histogram can only be
minimum(nsamps , count[i]). As we are processing each bin starting
from the bin with lowest count, the remaining samples will need
to be accumulated and re-distributed across the remaining bins. A
details of this one-pass algorithm is provided in Algorithm 1.

From this target histogram, acceptance histogram can be gener-
ated by computing the fraction of samples needed to be accepted
for each bin by dividing the target histogram counts by the origi-
nal histogram counts for each bin. The final stage of this process
requires a second pass over the data points and accepting/rejecting
them using that acceptance histogram. For each data point, now we
first check which acceptance bin it falls and what is the acceptance
probability. Using a random number generator, this data point can
be accepted/rejected. This stage is also scalable once the acceptance
histogram is generated and distributed across the processors.

4 COMPARISON AND PERFORMANCE
4.1 In situ Integration and Experimental Setup
To evaluate the in situ scaling performance of our proposed sam-
pling method along with the other sampling methods, we con-
ducted an in situ performance study using the Nyx cosmology

(a) (b) (c)

Figure 5: Point rendering results fromNyx simulation. a) us-
ing our sampling method (sampling ratio 0.5%). b) using reg-
ular sampling method (sampling ratio 1.5%). c) using strati-
fied random sampling method (sampling ratio 0.5%).

simulation code [2]. Different sampling algorithms were imple-
mented in C++ and were integrated into Nyx simulation code in
the writePlotFile(); in situ I/O routine. In situ sampling
was performed during each simulation time step. The in situ per-
formance study was conducted in a cluster with Intel Broadwell
E5_2695_v4 CPUs (18 cores per node and 2 threads per core), and
125 GB of memory per node. Nyx cosmology simulation can gen-
erate data at various spatial resolutions depending on the input
parameters. In our study, we ran Nyxwhich produced data of spatial
resolution 512 × 512 × 512 per time step.

4.2 Quality Comparison
The Nyx code generates a regular grid dataset where the density
field is one of the important scalar fields and high-density regions
generally indicate the Halos (features of interest). We provide vi-
sualizations of the in situ generated output data samples of differ-
ent sampling schemes for comparison purposes in Figure 4 (using
reconstructed volume visualization) and 5 (using direct particle
rendering). From Figure 4, it is observed that when only 1% sam-
ples are kept, the proposed algorithm (Figure 4(b)) preserves the
important features of the data quite well compared to the stratified
random sampling (Figure 4(c)) where the original data is given in
Figure 4(a). Given the same disk storage constraint, since regular
sampling can store 3×more samples, we have compared our results
with 3% samples of regular sampling. It is found that the regular
sampling scheme still cannot preserve the features well, and similar
observations can be applied to stratified random sampling. Figure
5 shows results for even lower sampling ratio 0.5% for our method
in Figure 5(a), 1.5% for regular in Figure 5(b), and 0.5% for stratified
random in Figure 5(c)). In the context of feature preservation, the
proposed method outperforms the other methods even at such low
sampling ratios.

Next, to quantitatively compare the image quality produced by
different sampling schemes to that of the original data, we use the
Pearson’s correlation coefficient as a comparison metric. We use
the red, green, and blue channels of the images from each sampling
method and compute the correlation coefficient with the image
generated from the original data. The rendering parameters are
fixed for all the cases. The result is presented in Table 1. As observed,
the proposed method produces superior visual quality compared to
the other two methods.
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Table 1: Quantitative similarity comparison of different
sampling method produced images to the image produced
by the original data under same rendering configuration.

Hist. Samp StRand. Samp Regular Samp
Isabel data 0.978 0.921 0.961
Nyx data 0.987 0.865 0.881

Table 2: In situ percentage timings of different sampling
methods and I/O timings w.r.t the simulation timings.

Hist.
Samp
(%sim
time)

Reg.
Samp
(%sim
time)

StRand.
Samp
(%sim
time)

Hist.
I/O
(%sim
I/O)

Reg.
I/O
(%sim
I/O)

StRand.
I/O
(%sim
I/O)

128 Cores 1.39 0.20 0.35 2.86 2.92 2.97
256 Cores 1.83 0.21 0.37 3.07 3.23 3.28
512 Cores 1.41 0.16 0.28 2.61 2.75 2.70

(a) (b)

Figure 6: a) Comparison of in situ sampling times among
the proposed method (blue), regular sampling (orange), and
random sampling (green). b) Comparison of in situ sampled
data I/O times among the proposed method (blue), regular
sampling (orange), and stratified random sampling (green).

4.3 In Situ Timing Comparison
To study the performance of our proposed sampling scheme, we
conducted an in situ performance study using the Nyx simulation
by running 100 time steps. Figure 6 shows the in situ sampling
and I/O times for all three methods. As can be seen that with an
increased number of cores, our method scales well along with the
other two methods. It is also observed that compared to regular
sampling and stratified random sampling, our method takes slightly
longer time. However, given the quality of improvement we get in
terms of preserving the important features in the sampled data, we
believe the slight extra time is well justified. Further, the in situ I/O
times in (Figure 6(b)) are similar for all the three methods. Next, in
Table 2 we show the % of simulation time spent in performing the
in situ sampling algorithms. As expected, the regular and stratified
random sampling methods are faster compared to the proposed
sampling method, but still, our method takes only around 1.5% of
the simulation time on average which is negligible in the current
context. Table 2 also reports the percentage disk I/O time for the
sampled data with respect to the simulation raw data I/O and as

can be seen that the I/O for sampled data is a small fraction of the
simulation raw I/O.

5 DISCUSSION AND LIMITATIONS
The proposed sampling scheme currently works on each variable in-
dependently while sampling. However, scientific simulations often
produce multiple variables and while sampling, the relationships
among different variables need to be considered so that the variable
relationships are preserved in the down-sampled data sets. There-
fore, in the future, we would like to extend this sampling scheme
into the multivariate domain. It is to be noted that by analyzing
a multivariate distribution the similar ideas can be extended to
the multivariate domain, however, high-dimensional distributions
suffer from high computational cost and high storage requirements.
Therefore, we will exploit compact distribution modeling schemes
[4, 15] to reduce the analysis overhead in the in situ environment.
Also, for conducting the evaluation and comparison studies, we
have used the Nyx cosmology simulation which produced data of
spatial resolution 512× 512× 512. In the future, we plan to perform
scaling study using other higher resolution data sets.

While evaluating the quality of the sampling schemes, we con-
ducted an image-based comparison study. The motivation was to
explore the quality of visualization that can be produced by differ-
ent methods under a fixed rendering configuration. However, we
would like to perform more detailed comparison study by directly
comparing the 3D reconstructed data to the raw data. Finally, we
acknowledge that the assumption that the rare values are more
important is true for outliers and noise values as well. Hence, the
proposed method will store such data values in the sampled data set.
However, it is to be noted that, such outliers can be of importance
to the scientists and by keeping such values we ensure that our
sampling scheme preserves the diverse nature of the data.

6 CONCLUSION AND FUTUREWORK
In this work, we have presented a novel information-driven sam-
pling technique for in situ applications. Our proposed method uses
the data histogram for computing an importance function for each
data point through the use of entropy maximization. Compared
to several popular sampling methods, our proposed method pre-
serves the features of the dataset much better, given a fixed dist
storage budget. We further demonstrate the superior qualities of
our in situ sampling method for Nyx cosmology simulation. In the
future, we would like to explore the in situ methods for information-
driven sampling opportunities for multivariate andmulti-resolution
datasets. We would further like to add data specific constraints for
the proposed generic sampling method for more improved data
handling and simulation steering.
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