
Julia for HPC: In Situ Data Analysis with Julia for Climate
Simulations at Large Scale

Li Tang1, Soumya Dutta2, Natalie Klein1, Wayne Yu Wang3, Jonathan David Wolfe1, Luke Van Roekel1,
Nathan Urban4, Ayan Biswas1, and Earl Lawrence1

1Los Alamos National Laboratory
2Indian Institute of Technology Kanpur

3Google LLC
4Brookhaven National Laboratory

ABSTRACT
Fast-evolving data science techniques have enabled scientific dis-
coveries by providing the ability to analyze large amounts of scien-
tific data and extract relevant patterns. However, the ever-increasing
gap between computing speed, which continues to increase, and
data input/output (I/O) bandwidth, which remains relatively con-
stant, often prevents full utilization of the data; we are likely un-
able to save all of the generated data for analysis. In situ data anal-
ysis techniques seek to address this issue by completing analysis
and pattern extraction from generated scientific data while the ap-
plication is running, and the in situ data analysis only involves
compute and in-memory data I/O, which improves performance.
In this paper, we develop an infrastructure for coupling a popu-
lar high-level data science programming language, Julia, with the
large-scale production-level climate code Energy Exascale Earth
System Model (E3SM). To demonstrate the infrastructure, we de-
velop two in situ data analysis methods in Julia and evaluate their
performance and the infrastructure overhead. Our results show that
our in situ Julia data analysis methods are able to detect extreme
weather events and characterize climate patterns with insignifi-
cant infrastructure overhead. Furthermore, our infrastructure allows
user-friendly development and deployment of new Julia data anal-
ysis modules without the need to recompile the simulation code,
giving data analysts a simple new tool for in situ analysis.

Keywords
Julia, In situ, High-performance computing, Climate simulations

1. Introduction
Computing devices are evolving much faster than storage devices
because of their different ratios of performance improvement to Re-
search and Development (R&D) investment in the post-Moore’s
Law era [34]. This trend enlarges the performance gap between
our computing and storage devices and greatly limits our ability
to analyze all the generated scientific simulation data. When run
on High-Performance Computing (HPC) systems, modern physics
simulations employ thousands of nodes, generating large amounts
of data. For example, at a high resolution, the three-dimensional
physics model state alone can be tens of gigabytes per time slice.

While this data could possibly be compressed and then stored with
high-performance input/output (I/O) for post-processing [25, 33],
data movement and post-processing time can be extremely long.
To address these issues, we adopt in situ data analysis to analyze
physics simulation data as the simulation is running. The in situ
data analysis design involves several design and performance trade-
offs in terms of coupling the physics simulation and data analysis,
and we will explore some of the trade-offs in this paper.
Our target HPC application is Energy Exascale Earth System
Model (E3SM) [18]. E3SM is the Department of Energy (DOE)
state-of-the-science earth system model, and we focus on E3SM’s
atmosphere component (EAM) in this study. Developing data sci-
ence techniques is extremely costly by using HPC programming
languages such as C/C++ and Fortran due to the ecosystem lacking,
so most data analysis programs are implemented by using Python.
However, Python’s performance is usually slow on HPC systems
and we decided to use Julia as the programming language of devel-
oping data analysis modules because of its superior performance
for data analysis and rich support of data analysis packages [24].
Therefore, the major challenge of employing in situ data analysis
in legacy scientific applications is that modern advanced data sci-
ence techniques are usually not implemented in the same way as the
HPC scientific codes. In this paper, we hypothesize that the Fortran-
based EAM can be effectively coupled with in situ Julia-based data
analysis modules on HPC systems.
To validate our hypothesis and demonstrate the in situ Julia data
analysis infrastructure, we implement two in situ data analysis
methods in Julia: (1) detection of Sudden Stratospheric Warming
(SSW) with generalized extreme value (GEV) analysis, and (2)
characterization of large-scale climate patterns via principal com-
ponents analysis (PCA). SSW events are extreme events in the up-
per atmosphere (approximately 20km above ground level) that can
cause the temperature to rise as much as 50oC in only a few days.
This extreme warming can destabilize the polar vortex, which can
in turn lead to rapid swings in surface air temperature. To identify
SSWs, we developed an in situ analysis method that documents ev-
ery occurrence when the zonal mean of the zonal wind becomes
reversed (easterly) at 60°N and 10 hPa and lasts for at least 10 con-
secutive days in the northern hemisphere winter. To characterize
surface temperature changes that may result from SSWs, we fitted
in situ generalized extreme value (GEV) models to the daily min-
imum surface temperatures at each spatial point in the continen-

1

The Proceedings of the JuliaCon Conferences 6(60), 2024

tal United States (CONUS) via streaming variational inference [7].
By updating two separate sets of models (one following SSWs and
one not), we examined differences in extreme temperature behav-
ior. Our second data analysis method focuses on PCA of the surface
temperatures across the globe. PCA is a common statistical tech-
nique for identifying patterns in data that best explain variation in
the data. Our TributaryPCA method estimates the top spatial prin-
cipal component patterns in a streaming, distributed fashion [36],
whereas traditional analysis would need to save data from all spatial
locations across many time steps to compute the principal compo-
nents.
This paper presents a practical case study that uses Julia-based
analysis in situ with a large-scale HPC application. The major ben-
efit of this work is that it provides a reference design for coupling
Julia with modern large-scale HPC applications which could be ap-
plied to other HPC applications with minimal effort. In addition,
data scientists could develop new Julia data analysis methods and
insert them into the interface without recompiling the HPC code.
Another benefit of this work is an accurate and quantitative view of
how the Julia infrastructure and coupling impact the original HPC
application, which helps provide actionable guidance to HPC users
before coupling Julia with their target HPC applications. To help
HPC users adopt the in situ approach and Julia to meet their needs,
this work provides the following key contributions:

(1) We develop a novel in situ data analysis infrastructure for cou-
pling E3SM with Julia for in situ data analysis at large-scale
with high productivity.

(2) We develop two in situ Julia data analysis methods for E3SM’s
EAM data at large-scale for identifying sudden stratospheric
warmings and identifying dominant spatial patterns in temper-
ature.

(3) We evaluate the performance of this coupling infrastructure on
a large-scale HPC system and study various design consider-
ations, leading to guidelines for adopting Julia for in situ data
analysis on other HPC applications.

(4) We have open-sourced the code and instructions for reproduc-
ing this in situ data analysis with E3SM in https://github
.com/ltang85/In-Situ-data-Analysis-with-Julia
-for-Climate-Simulations-at-Large-Scale/tree/
main/src.

This paper is organized in the following structure. Section 2
provides the background information and discusses some related
works. Section 3 presents the in situ infrastructure that couples the
EAM and the in situ Julia modules. Section 4 describes the algo-
rithms of our two in situ Julia modules. Section 5 shows the exper-
imental results, and section 6 summarizes this paper.

2. Background and Related Work
In this section, we describe the E3SM HPC simulation, the Julia
programming language, and the general concept of in situ data anal-
ysis before discussing recent closely related work.
Our work aims to provide data scientists with a performant inter-
face for developing in situ data analysis algorithms without directly
interacting with complex HPC codes or relying on post-hoc analy-
sis. However, there are three challenges in doing so. First, E3SM’s
EAM is written in Fortran and adopts Message Passing Interface
(MPI) for large-scale parallelism [35], and there are no Fortran
APIs for embedding Julia into EAM. Second, one MPI rank of
EAM is only able to access to its local data (e.g., velocity and tem-
perature), and each in situ Julia data analysis instance can only ac-
cess the same local data of its parent EAM MPI rank. Lastly, EAM

is compiled and interacts with other E3SM components, and the in
situ Julia data analysis should be noninvasive to other E3SM com-
ponents. To address these challenges, we develop and implement an
infrastructure for coupling the Julia runtime with E3SM, which en-
ables effective transfer of data and consistent MPI communication
between Julia and E3SM through a minimalist design.

2.1 E3SM
E3SM is the new earth system model developed by DOE to an-
swer critical DOE mission questions relating to energy and wa-
ter security and run efficiently on emerging HPC architectures.
E3SM includes components to model the atmosphere, land, rivers,
ocean, and sea ice. The atmosphere component, EAM, utilizes a
spectral element discretization on a cubed sphere grid. The model
uses approximately 110 km resolution in the horizontal and 72
vertical layers with variable spacing. The model top is at 60km
above ground level. A detailed analysis of its performance is given
in [40, 41, 31, 32, 18]. EAM has a number of key features rela-
tive to its predecessor, which are described in [18]. Of interest to
our work is the linearized ozone photochemistry, which improves
EAM simulations of the stratosphere, which is critically important
for our SSW analysis.

2.2 Julia
Julia is a dynamically typed programming language that is
for general-purpose application development and provides many
Python-like features (e.g., rich package support) [6]. The first pub-
lic Julia release was introduced in 2013 and it is designed to provide
users with the speed of C/C++/Fortran [6] while giving a conve-
nient high-level programming environment. Julia is a built on top
of the modularized LLVM compiler infrastructure [28], and fea-
tures a Just-In-Time (JIT) compilation engine [3]. Therefore, Julia
is ideal for agile development of advanced data science algorithms
due to its speed and effectiveness in solving computationally com-
plex problems. Also, Julia has support for parallelism and concur-
rency, which are crucial for HPC applications. In this paper, our
major goal is to increase productivity by allowing data scientists to
focus on writing high-level, performant numerical algorithms for
legacy HPC applications at large-scale.

2.3 In Situ Data Analysis
Conventionally, large-scale HPC applications write their simulated
scientific data to slow disks for post-hoc usage such as data analy-
sis and visualization. As discussed before, the speed gap between
computing and I/O is increasing, and modern supercomputers can
generate large amounts of data that may not be fully stored. There-
fore, the in situ approach is a processing technique that conducts the
conventional post-hoc data analysis on the fly while the HPC appli-
cation is still running, rather than using the data after it has been
dumped to disk. That is, conventional disk I/O is converted to in-
memory processing, which increases speed and enables dynamical
analysis on full, rather than compressed and stored, simulation data.
Employing this in situ technique enables novel data analysis meth-
ods that require large amounts of high-resolution simulation data
from E3SM. Two conventional alternatives are data compression
and high-performance I/O. For example, the Software for Caching
Output and Reads for Parallel I/O (SCORPIO) library is used by
E3SM for parallel data I/O [33].

2

https://github.com/ltang85/In-Situ-data-Analysis-with-Julia-for-Climate-Simulations-at-Large-Scale/tree/main/src
https://github.com/ltang85/In-Situ-data-Analysis-with-Julia-for-Climate-Simulations-at-Large-Scale/tree/main/src
https://github.com/ltang85/In-Situ-data-Analysis-with-Julia-for-Climate-Simulations-at-Large-Scale/tree/main/src
https://github.com/ltang85/In-Situ-data-Analysis-with-Julia-for-Climate-Simulations-at-Large-Scale/tree/main/src

The Proceedings of the JuliaCon Conferences 6(60), 2024

2.4 Related Work
The in situ approach has been studied in recent years and has
been employed in different aspects of HPC. First, there are existing
in situ frameworks, such as Ascent [27], ParaView Catalyst [15],
SENSEI [2], VisIt libSIM [38], and SmartSim [10]. These devel-
oped frameworks aim to help users build data analysis and data vi-
sualization, but none of them supports the Julia programming lan-
guage. Second, the open-sourced ADIOS/ADIOS2 [29, 17] data
I/O system and the studies of Chimbuko/CODAR [26] have ex-
plored data reduction for in situ approaches and researched the per-
formance optimization of the whole in situ data analysis workflow.
Last, previous studies have been made on optimizing the complex
workflow that involves complex HPC applications and post-hoc
data analysis. However, these studies still require significant I/O
on disk storage and are not able to help reduce the data. For a more
comprehensive summary of in situ infrastructures, readers are re-
ferred to [5, 11].
The demand for scalable algorithms for analyzing climate data is
growing rapidly as computational climate simulations scale up,
leading to growing output data size and prompting scientists to
turn to in situ analysis approaches. For example, in situ analysis
of eddies in large-scale MPAS-Ocean simulation data was done by
Woodring et al. [39]. In this work, we focus on two data analysis
questions of interest to climate scientists and demonstrate their in
situ application. For extreme weather event analysis, the connec-
tion of SSW with the polar vortex events is a focus area for clima-
tologists [4]. More recently, scientists have also used extreme-value
distribution models for capturing rare climate phenomena and fur-
ther analyzing them in detail [23, 37]. In our recent work, the use-
fulness of in situ SSW analysis was also demonstrated [13]. For
general summarization of large-scale patterns, principal compo-
nents analysis (PCA) is a standard method that typically requires
access to the full simulation data across time steps to capture sea-
sonal trends and deviations. TributaryPCA is an adaptation of PCA,
a statistical method for reducing the dimensionality of big data,
to the in situ setting. Ordinary PCA summarizes variation by pro-
jecting high-dimensional data into a lower-dimensional space opti-
mized to retain fundamental properties of the data). TributaryPCA
is a distributed version of an existing algorithm for online PCA
(Oja’s algorithm) that uses the MPI standard for communication.
In this way, TributaryPCA is able to estimate the principal compo-
nents from data that arrives sequentially over time and that is dis-
tributed across compute nodes. In previous work from our team, the
accuracy and computational efficiency of the TributaryPCA method
was demonstrated [36], but it was not applied in situ. An open-
source Julia implementation is available at https://github.com
/lanl/PRISM/tree/master/TributaryPCA.jl.

3. In Situ Infrastructure
Our in situ infrastructure consists of a Fortran interface, a C inter-
face, and a Julia interface, which we describe in turn after introduc-
ing the overall design.

3.1 Overall Design
As EAM is our target, the primary design consideration in cou-
pling Julia with E3SM is the identification of an appropriate entry
point in E3SM’s EAM for calling in situ Julia data analysis mod-
ules. EAM is simulated in the time-step style, so we place the entry
point of calling in situ data analysis in the control of data output for
each time step. The second design consideration is the management
of in situ Julia data analysis. We implement the Julia management

Fig. 1: Overall infrastructure design.

in EAM at the in situ entry point because E3SM schedules the jobs
of EAM and other components. Last, due to the lack of APIs for
embedding Julia in Fortran with MPI, we develop a C interface to
help the communication between E3SM and Julia. The MPI com-
munication relies on the MPI interface for the Julia language [8]. To
make the C interface flexible, we also define and develop a simple
Julia interface for quickly adopting various in situ Julia data anal-
ysis methods without interacting with E3SM. The whole design is
shown in Figure 1. Our primary target data consumption pattern
of the in situ data analysis module is that the in situ module can
consume any intermediate simulation data in a non-invasive way,
which is independent on the simulation output. Also, this in situ
infrastructure enables superior data analysis capability over the al-
ternative data compression or high-performance I/O solutions when
the simulation is running at larger scales or higher resolutions.

3.2 Fortran Interface
To couple E3SM’s EAM with Julia, we implement a Fortran-based
in situ interface in EAM to manage in situ Julia data analysis and
pre-process the EAM simulation data. Specifically, this interface is
implemented in EAM’s stepon component, but we note this inter-
face could be used for in situ data analysis on other E3SM com-
ponents with minimal effort. Two major tasks are implemented in
our Fortran interface. First, this interface calls the worker function
of actual in situ Julia data analysis at every time step, and the ini-
tialization/cleanup functions at the first/last time step. Second, the
interface wraps the EAM simulation data with its supportive data
(e.g., data length, time step) and passes the pointer of the wrapped
data to the C interface for removing explicit data copy. Also, this
adapter passes an internal E3SM MPI communicator to the C in-
terface. When the E3SM simulation is running at large-scale, each
MPI rank of EAM calls its own Fortran interface and initiates one
Julia instance. For the time steps between the first and last time
step, each in situ Julia instance returns the control back to its par-
ent EAM after it finishes its data analysis. After Julia returns its
control back to EAM, the Julia runtime is still working and keeps
global variables alive for usage in the following time steps.

3.3 C Interface
The C interface stands between the Fortran and Julia interfaces,
which aims to efficiently implement the functions in the Fortran
interface for interacting with Julia. The C interface includes three
major functions: initialization, cleanup, and worker, which creates
an in situ Julia instance (by loading and initializing the in situ Ju-
lia module from a specified path), destroys the Julia instance, and
passes the data from the Fortran interface to the in situ Julia in-
stance (i.e., Julia interface). The following code snippet shows the
major parts of the initialization and cleanup functions in the C in-
terface.

3

https://github.com/lanl/PRISM/tree/master/TributaryPCA.jl
https://github.com/lanl/PRISM/tree/master/TributaryPCA.jl

The Proceedings of the JuliaCon Conferences 6(60), 2024

Code 1: C interface initialization and cleanup.� �
jl_function_t *f;
void jl_init_ (){

jl_init__threading ();
jl_eval_string (" Base . include (Main , \
\" insitu . jl \") ");
jl_eval_string (" using Main . mymodule ");
jl_module_t * mod_name = \
(jl_module_t *) jl_eval_string (" Main . mymodule ");
f = jl_get_function (mod_name , " streaming ");
return ;

}
void jl_exit_ (){

jl_atexit_hook (0);
return ;

}� �
The worker function in the C interface aims to support efficient
low-level data communication between E3SM and the in situ Julia
data analysis. The key implementation of this C interface is shown
in the following code snippet. Each MPI rank of EAM has access
to only a local data block of EAM variables (e.g., velocity and tem-
perature) and passes its local data block’s pointer (e.g., arr and
p_arr in the code snippet) to its own in situ Julia instance through
the C interface. When the in situ Julia instance needs remote data
(e.g., for computation of SSW) from other in situ Julia instances,
MPI.jl is used in the Julia interface to implement the data commu-
nication between different in situ Julia instances. However, one key
design challenge is to ensure that E3SM and Julia use the same MPI
communicator for correct data communication, as current Julia C
embeddings are not able to directly pass the MPI communicator. To
address this challenge, we transfer the original Fortran MPI com-
municator to this C interface without conversions, and then wrap it
as jl_box_int32 and pass it to the Julia interface. The Fortran MPI
communicator will be converted to Julia MPI communicator in the
Julia interface. It is also important to root the Julia objects in this C
interface between JL_GC_PUSH3() and JL_GC_POP(), prevent-
ing that the garbage collection (GC) frees the Julia references of
arr and p_arr in this C interface accidentally. This is because
arr and p_arr in the code snippet are allocated and deallocated
in E3SM for every time step, and the Julia rooting can hold the
references safely when running the Julia code.

Code 2: C interface worker.� �
void jl_worker_ (double * arr , int * arrlen , \
int * p_arr , int * p_len , MPI_Fint * Fcomm){

jl_array_t *x = NULL , *y = NULL ;
jl_value_t * jl_comm = NULL ;
JL_GC_PUSH3 (&x, &y, & jl_comm);
x = jl_ptr_to_array_1d (jl_apply_array_type \
((jl_value_t *) jl_float64_type ,1), arr ,* arrlen ,0);
y = jl_ptr_to_array_1d (jl_apply_array_type \
((jl_value_t *) jl_int32_type ,1), p_arr ,* p_len ,0);
jl_comm = jl_box_int32 (* Fcomm);
jl_call3 (f,(jl_value_t *)x,(jl_value_t *)y, jl_comm);
JL_GC_POP ();
return ;

}� �
3.4 Julia Interface
The Julia interface mainly defines the format of input data, so all
in situ Julia data analysis methods can be plugged-in without addi-

tional E3SM compilation, thanks to Julia’s Just-in-time (JIT) com-
pilation. As discussed previously, another key design of the Julia
interface is to correctly convert the Fortran MPI communicator to
Julia MPI communicator, which enables the algorithm developers
to write their analysis routines using the same EAM MPI commu-
nicator. Due to the low-level MPI implementations, different MPI
libraries (i.e., OpenMPI, MPICH, and MVAPICH) require specific
converters; the following code snippet shows the converter imple-
mentations [20, 30, 21].

Code 3: Juila interface MPI conversion.� �
// OpenMPI
Jcomm = MPI . Comm (ccall ((: MPI_Comm_f2c , \

" openmpi / lib / libmpi . so "), Ptr { Cvoid }, \
(Cint ,), Cint (Jcomm)))

// MPICH and MVAPICH
Jcomm = MPI . Comm (Cint (Jcomm))� �
3.5 Noninvasive Compilation
The final design consideration is the compilation and execution de-
sign of coupling Julia with E3SM. The Fortran interface is imple-
mented inside EAM, and the C interface file is placed in the same
folder as the Fortran interface. The in situ Julia module is placed
in the same run folder with the E3SM executable. As E3SM mixes
the usage of GNU Make and CMake for combining and compiling
different E3SM components, we have added the Julia compilation
flags for the C and Fortran interfaces into the EAM CMake file (i.e.,
header files) and the top-level GNU Make file (i.e., Julia libraries).
As we load the in situ Julia module via the Just-In-Time (JIT) sce-
nario, the in situ Julia module is only compiled when it is called
during runtime. Therefore, the whole infrastructure avoids recom-
piling the whole of E3SM when the in situ Julia module needs to
be changed, and the in situ Julia module can be easily switched by
only replacing the code of the same module file.

4. Data Analysis Modules
In this section, we describe the two demonstration data analysis
modules: detecting SSW with extreme value modeling, and Tribu-
taryPCA.

4.1 Sudden Stratospheric Warming (SSW)
SSW events often lead to extreme cold temperatures across the
United States, sometimes referred to as polar vortex events, which
can have severe downstream impacts on energy systems (e.g.,
power grid) and on human lives. Accurate prediction of SSWs in
simulations requires monitoring zonal winds at high temporal fre-
quency; this is challenging in traditional simulation work flows due
to data storage and access bottlenecks.
Our first in situ climate analysis algorithm detects extreme weather
events called SSWs. By definition, SSW is characterized as a major
midwinter warming that occurs when the daily zonal mean zonal
winds at 60◦N and 10 hPa (hectopascal) become easterly for at
least 10 consecutive days between November and March [9, 1].
This event can result in extremely cold temperatures at the Earth’s
surface, causing hazardous weather and disrupting many socioeco-
nomic sectors. Since the robust detection of rare SSW events re-
quires spatiotemporal climate data at high temporal frequencies,
for high-resolution EAM runs, post-hoc SSW detection capabili-
ties are limited as storage of high-resolution and high-frequency

4

The Proceedings of the JuliaCon Conferences 6(60), 2024

climate data would be prohibitive. Therefore, an in situ SSW de-
tection algorithm is required.
Here, we briefly present the distributed SSW detection technique
that we have developed and deployed in situ with EAM. During
the simulation run, when a time marks the end of a day, we further
process data from that time step. Initially, we compute the zonal
mean zonal wind at each MPI process independently using zonal
velocity (U-velocity). As the EAM mesh does not put grid points
exactly at 60◦N and 10 hPa, we first filter two layers of grid points,
which are above and below the 10 hPA pressure level and fall within
[59◦N - 61◦N] at each MPI process. Then, we linearly interpolate
the zonal wind values to obtain values at 60◦N and 10 hPa. Then,
using an MPI reduction, we estimate the final global daily zonal
mean zonal wind value. Based on the definition of SSW, this value
needs to be negative for at least 10 consecutive days, so we main-
tain a global counter variable that keeps track of the number of
consecutive days for which the value is negative. Once the value
of that counter reaches 10, we record an SSW event for that sim-
ulation year (where the event continues until the mean zonal wind
becomes non-negative again). A pseudo code for this algorithm is
provided in Algorithm 1. Note that when an SSW event is detected,
the climate scientists typically are interested in collecting more data
from the following time steps, so the SSW detection can be used as
a triggering event. Using SSW as a triggering event can reduce the
overall in situ computation load since the SSW-specific analyses
will only happen adaptively when an SSW event is detected.

Algorithm 1 In situ algorithm for SSW detection.

Input: EAM simulation data.
Output: A list of time steps and corresponding simulation years

when SSW is detected.

1: for each EAM time_step do
2: if (current_time_step == end_of_day) then
3: Compute partial zonal mean zonal wind values
4: at each MPI process.
5: Compute the global zonal mean zonal wind
6: values with MPI:Reduction.
7: if (global zonal mean zonal wind < 0) then
8: counter=counter+1
9: else

10: counter=0
11: if ((counter == 10)) then
12: Record current time step as the beginning of
13: an SSW event.
14: else
15: continue

To characterize spatial patterns in surface temperature across
CONUS following a detected SSW (compared to no detected
SSW), we fit two separate GEV models, similar to [13]. These
models represent the distribution of the daily minimum temper-
atures separately at each spatial location. Specifically, we trans-
form the surface temperature data by subtracting 300◦K and mul-
tiplying by negative one, then fit GEV models. Briefly, we fit
Gumbel models with probability density function p(x;µ, β) =
1
β
exp

{
−
[
x−µ
β

+ exp
(
−x−µ

β

)]}
where the initial priors are

p(µ) ∼ N (0, 10) and β ∼ LogNormal(0, 0, 5). As described
in [13], Algorithm 1, model parameters are updated periodically
using a buffer of recent data, depending on whether or not an SSW

event was recently detected; at each step, the approximate varia-
tional posterior distribution from the previous step is used as the
prior when updating the model with the new data point to achieve
approximate streaming Bayesian inference across time points. In
this paper, we update the GEV models every three days, using the
last three days of daily minimum temperatures as the data for mod-
eling. The fitted GEV models then represent distributional infor-
mation about the data through their parameter estimates, which are
updated in situ without the need to save the raw data. In this work,
each time the GEV models were to be updated, we used 10 Monte
Carlo samples to evaluate each gradient and 500 total optimization
iterations. We used the Adam optimizer from Turing [16] with a
learning rate of 0.0001.

4.2 TributaryPCA
As described more fully in [36], TributaryPCA solves the stan-
dard PCA objective in a distributed, online fashion; we give a brief
overview of the implementation here. Let X ∈ Rd×N be a data set
consisting of N samples with unknown covariance Σ ∈ Rd×d. In
our application, N is the number of time points and d is the num-
ber of spatial locations. PCA seeks a k-dimensional orthonormal
subspace V ∈ Rd×k such that when the data are projected onto V ,
their variance is maximized. This amounts to solving

max
V ∈Rd×k

V T V =Ik

Tr
(
V TΣV

)
. (1)

Equation (1) is maximized by the top-k eigenvectors of Σ, so the
classical PCA calculation computes the top-k eigenvectors of the
estimated covariance matrix. However, this approach is not feasible
when data arrives sequentially (so that all N samples are not avail-
able at one time) or when the dimension of the data is large (so that
it is not stored centrally on one compute node). In the streaming
setting, the AdaOja algorithm [22] seeks to estimate the solution
to Equation (1) using projected stochastic gradient descent with an
automatically-tuned step size. That is, the estimated eigenvectors V
are adjusted as each data point arrives (over time) using the gradi-
ent of Equation (1) evaluated at the new data point. This procedure
consists of three key steps: a gradient computation, a learning rate
update, and a QR decomposition (to ensure the orthogonality of the
estimated eigenvectors). The TributaryPCA algorithm (1) computes
the gradient in a distributed fashion using data stored on each node
and MPI allreduce, (2) updates the learning rate in a distributed
fashion using MPI allreduce, (3) applies the stochastic gradient
update on each node, and (4) uses distributed linear algebra [12] to
orthogonalize the estimated V (collected from all nodes using MPI
reduce). In streaming PCA, data Xi ∈ Rd×1, i = 1, ...,N arrives
sequentially and the goal is to compute V using all N samples,
where V is updated sequentially with the current estimate denoted
as Vi. The AdaOja algorithm relies on an initial learning rate α
which we initialize to 1e − 5. In TributaryPCA, we have the addi-
tional complication that data Xi is partitioned across B compute
nodes. The key portion of the in situ code (that would be called at
each time step during the simulation) is shown in the following list-
ing, where X_par is the data on the current node (of shape db × 1
where dB is the dimension of the data on a single compute node in-
dexed by b), V_par is the node’s spatial subset of the current global
estimate of the eigenvectors (of shape dB × k), comm is the MPI
communicator object, master denotes the root/master node, and
grad_par, abs2, α are pre-initialized arrays. The code has three
key steps: first, the gradient for the AdaOja streaming PCA update
is computed; this quantity is XiX

T
i Vi−1, which is computed with a

5

The Proceedings of the JuliaCon Conferences 6(60), 2024

local dot product at each node followed by an Allreduce to com-
bine results across nodes, and another multiplication locally. The
second step is to update the learning rate based on the norm of the
gradient and take a gradient step to update Vi−1 to Vi based on data
Xi. Finally, the result must be projected to ensure Vi is orthogonal.
This is accomplished by QR decomposition Vi = QiRi where Vi

is updated to the orthogonal Qi. For distributed QR decomposition,
we use CholeskyTSQR [12].

Code 4: Key algorithmic steps of TributaryPCA in Julia.� �
Step 1: Compute gradient for AdaOja
XT_V_par = X_par ' * V_par
XT_V = MPI . Allreduce (XT_V_par , +, comm)
mul !(grad_par , X_par , XT_V , 1 .0 /N, 0 .0)
Step 2: Update learning rate α
and apply gradient update
s = sum (abs2 , grad_par , dims = 1)[:]
grad_norm_sq = MPI . Allreduce (s, +, comm)
α .+= grad_norm_sq
Apply local gradient update
α_r = reshape (sqrt .(α), (1, size (α, 1)))
V_par .+= grad_par ./ α_r
Step 3: Projection -- Orthogonalize to
form global update of V
VT_V_par = V_par ' * V_par
VT_V = MPI . Reduce (VT_V_par , +, master , comm)
if node_id == master

chol = cholesky !((VT_V + copy (VT_V ')) / 2)
Rinv = inv (chol .U)

else
Rinv = nothing

end
Rinv = MPI . bcast (Rinv , master , comm)
V_par .= V_par * Rinv� �
5. Experiments
This section first summarizes the experimental setup for our in situ
tests, including the application setup, conducted problems, build
process and the underlying systems. Then we will show the in situ
data analysis results of our in situ SSW and PCA Julia modules.
Finally, we discuss the performance of this framework and some
insights of conducting in situ Julia data analysis with large-scale
scientific applications on modern supercomputers.

5.1 Setup
We have run all our experiments on a cluster, Grizzly, located at Los
Alamos National Laboratory (LANL). Grizzly consists of 1,490
compute nodes, and each node is equipped with two Intel Broad-
well Xeon E5-2695v4 2.1GHz processors (18 cores per CPU) and
128GB 2400 MHz DDR4 memory. Table 1 shows the Xeon E5-
2695v4 specifications. The system runs on a Tri-Lab Operating
System Stack (TOSS) and its nodes are connected by Intel Omni-
Path Host Fabric Interface (HFI) single port via PCIex16. Grizzly
uses Slurm for job scheduling and resource management. The total
storage is 15PB.
To deploy our in situ algorithms, we have run the fully cou-
pled E3SM simulation and accessed the data from its Atmosphere
model, EAM, for analyses. The EAM module runs in conjunction
with other coupled modules (MPAS-Ocean, MPAS Sea Ice, MPAS
Land Ice, and Land Surface) to produce scientifically meaningful
climate data. In this work, we use a realization of the Shared So-
cioeconomic Pathway (SSP) 585 scenario [14] with E3SM. This
is an aggressive scenario that assumes the climate will experience

Table 1. : The E5-2695V4 CPU specifications

Specifications Values

Total Cores 18
Total Threads 36
Max Turbo Frequency 3.30 GHz
Processor Base Frequency 2.10 GHz
Cache 45 MB
Memory Types DDR4
Max Memory Bandwidth 76.8 GB/s

an increase in radiative forcing of 8.5 W/m2. We use the standard
E3SM V1 configuration with a 1◦ atmosphere and land (equivalent
to 110 km at the equator), 0.5◦ river model (55 km), and an ocean
and sea ice with mesh spacing varying between 60 km in the mid-
latitudes and 30 km at the equator and poles [19].
Our tests fall into two data analysis tasks: SSW and PCA. Impor-
tantly, E3SM is only compiled once, and we can then switch be-
tween the PCA and SSW in situ Julia modules. The Julia modules
are dynamically compiled and executed by using the Julia 1.8 ver-
sion. Each in situ run is performed 10 times to mitigate system
noise. We also add timers in the Slurm system for measuring per-
formance and overhead.

5.2 In Situ SSW Detection and Characterization
Results

After running for 365 simulation days (one simulated year), with
the GEV models updated every three days, we found that the post-
SSW GEV model was updated 11 total times while the non-SSW
GEV model was updated 110 times. More detailed analysis of of-
fline data, including the comparison of SSW and non-SSW models,
can be found in [13]; for the purposes of this paper, we are inter-
ested in demonstrating the in situ, streaming modeling approach
in general rather than drawing specific conclusions from the sim-
ulation in question. As a result, we will show the GEV modeling
results for the non-SSW simulation periods because the models
were updated more total times and therefore achieve lower param-
eter variance and greater interpretability. Figure 2 shows the GEV
model parameters µ (location) and β (scale) for the non-SSW time
periods at the conclusion of one simulated year. While the param-
eter values can be somewhat difficult to interpret directly, we em-
phasize that these saved parameter values, taking only a fraction of
the storage space of the original data, can provide rich information
about the distribution of minimum temperatures; for instance, we
can use the model parameters to answer questions such as “What is
the probability that the minimum temperature is more than 10 de-
grees Kelvin lower than the average value?” In this relatively short
simulation run, we see that the spatial patterns in the parameter
plots are somewhat rough and non-smooth, particularly for β; we
expect that longer simulation runs and modifications to the GEV
variational inference scheme could improve our estimates. How-
ever, it is promising that some noticeable spatial structure appears;
for example, both µ and β appear to be smaller over the Atlantic
Ocean, mirroring the tendency of temperatures to be more stable
over the ocean (less fluctuation in the minimum value). We take
these results as a promising sign that our models can capture rele-
vant information, though due to the relatively short simulation time
period, we leave making any claims based on these models for fu-
ture work.

6

The Proceedings of the JuliaCon Conferences 6(60), 2024

Fig. 2: Generalized extreme value (GEV) model parameter estimates at
the end of one simulation year for the non-SSW time periods across the
continental United States (coastline denoted with black points). Top:
location parameter µ, which shows notable spatial patterns over the At-
lantic Ocean and the Gulf of Mexico; in addition, a band of lower µ
values appears to stretch through the Midwest region. Bottom: scale
parameter β, which has less smooth spatial structure, but some similar-
ities to the top figure in terms of lower values over bodies of water and
through the Midwest region.

5.3 PCA Results
Over the one-year simulation run, we extracted the top three spatial
principal components of the surface temperature variable using the
TributaryPCA method; the principal components were updated in a
streaming fashion at each simulation time step (6-hour time steps).
Figure 3 shows spatial plots of these three principal components.
Each component indicates a different spatial pattern of warming
(red color) and cooling (blue color) extracted from the simulation
data. In particular, the first component indicates a temperature dif-
ferential between equatorial and polar regions; because the mean
was not removed, this component can be interpreted as the mean
pattern across the time steps. The second component indicates a
temperature differential between much of the Eastern hemisphere
and the Americas and parts of Africa. The third component indi-
cates a temperature differential between Africa and Europe and
other regions. It is plausible that the second and third components
correspond to the regular diurnal cycle, which is likely one of the
largest sources of regular variation in the one-year timespan con-
sidered here. While these components were extracted from a fairly
short simulation run, the results demonstrate the ability of Tribu-
taryPCA to extract important climate patterns while running in a
distributed in situ environment, without saving any raw data for
post-processing.

5.4 Performance
This section studies the performance of our developed in situ
framework and how the framework impacts the performance of
E3SM. Based on these studies, we will make suggestions for in-
tegrating in situ Julia analysis with large-scale HPC applications.

Fig. 3: First three spatial principal components obtained by in situ Trib-
utaryPCA method. Within each component, the white color indicates no
change to surface temperature, while blue and red indicate temperatures
deviating in different directions from zero. The first principal compo-
nent appears to indicate the overall difference between the poles and the
equator. The second principal component indicates differences between
the Eastern hemisphere and Africa/the Americas, while the third com-
ponent indicates differences in Africa and Europe compared to other
regions.

5.4.1 Problem and Processing Element (PE) Layout.

The atmosphere component of E3SM, CAM, uses a spectral ele-
ment dynamical core at 110-km resolution on a cubed sphere geom-
etry. It has 72 layers with a top at approximately 60 km. The main
atmosphere physics time step is 30 minutes and the ne30 grid used
as the E3SM v1 main configuration has 5400 horizontal elements.
So, we define nine different PE layouts in Table 2 to distribute the
workload of 5400 atmospheric elements evenly (for performance
evaluation), as well as the other components. Some of the other
components run sequentially with CAM, using the same proces-
sors as it does, while other run concurrently on a different set of
processors.

5.4.2 Framework Performance.

We first run the high-resolution E3SM problem with both of the
SSW_GEV and PCA in situ analyses. For each analysis, we run

7

The Proceedings of the JuliaCon Conferences 6(60), 2024

Table 2. : List of our PE Layouts. The PE layouts include three different
numbers of MPI ranks and three different numbers of nodes.

PE Layout # of nodes # of PEs # of PEs (MPI
(MPI ranks) ranks) per node

100%Small 38 1350 36
50%Small 75 1350 18
25%Small 150 1350 9
100%Medium 50 1800 36
50%Medium 100 1800 18
25%Medium 200 1800 9
100%Large 75 2700 36
50%Large 150 2700 18
25%Large 300 2700 9

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

100%S 50%S 25%S 100%M 50%M 25%M 100%L 50%L 25%L

PCA SSW_GEV

Fig. 4: In situ data analysis overhead (ratios of in situ data analysis time
to the total EAM time).

with the predefined nine different PE layouts. Figures 4 and 5 show
the in situ data analysis overhead and the infrastructure overhead,
respectively. The overhead bars represent the ratios of the data anal-
ysis and infrastructure overhead time to the total EAM execution
time. The overhead execution time includes the data preparation
for the Julia module, loading Julia module, and cleaning up the
Julia module. It can be seen from the results that our developed
SSW_GEV only consumes less than 4% of the total EAM execu-
tion time. PCA is more computationally intensive than SSW_GEV,
and it can take up to 26% of the total EAM execution time. This is
because the main tasks of SSW_GEV and PCA are linear interpo-
lation and Cholesky decomposition, respectively. The performance
bottleneck of PCA is the expensive Cholesky decomposition. In ad-
dition, it can be observed that the in situ analysis consumes more
time of the EAM execution time for larger layouts and higher PE
usage on each node. This is because EAM generates less data per
node in large layouts and the in situ analysis is less performance-
sensitive than EAM in terms of data reduction. Also, higher PE
usage per node raises memory pressure for the in situ analysis.
We also observed that GC might potentially cause irregular system
crashes when the in situ data analysis runs for a long time.

5.4.3 E3SM performance trends.

To study how the in situ analysis impacts the E3SM performance,
we also run the original E3SM without the in situ framework. Fig-
ures 6 and 7 show the performance trends of the EAM compo-
nents with different PE layouts for the SSW_GEV and PCA in
situ experiments, respectively. As discussed in the previous section,

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

100%S 50%S 25%S 100%M 50%M 25%M 100%L 50%L 25%L

PCA SSW_GEV

1.71%1.48%1.00%

Fig. 5: In situ infrastructure overhead (ratios of in situ infrastructure
overhead time to the total EAM time).

0

5000

10000

15000

20000

25000

30000

100%S 25%S 50%S 100%M 25%M 50%M 100%L 25%L 50%L

Se
co

nd
s

SSW_GEV EAM+PCA Original EAM

Fig. 6: Execution time trends of the SSW_GEV in situ analysis and the
EAM component.

SSW_GEV is lightweight, and its performance trend is flat com-
pared to the EAM component. Also, the EAM component itself is
almost not impacted by the in situ framework. The only exception
is the high PE usage per node and the reason is limited memory
shared by E3SM and the Julia runtime and module. For PCA, the
only performance overhead of the in situ framework is from the
Julia analysis, where high PE usage per node can cause up to 6%
additional overhead for SSW_GEV with the 100%L layout.

5.4.4 Performance variations across MPI ranks.

We examine the performance variations across all MPI ranks for
SSW_GEV and PCA in this section. As we run the same high-
resolution problem for 12 months for all of our experiments, the
load balancing is only impacted the total number of PEs (i.e., S,
M, and L). Figures 8 and 9 show the performance variation results
for the SSW_GEV and PCA in situ experiments, respectively. The
performance is represented by the processing rate, which is defined
as the number of single-precision floating-point variables that can
be processed in one second. The blue, orange, and grey bars repre-
sent the slowest, average, and fastest processing rates. First, it can
be seen from the figures that SSW_GEV has higher variation than
PCA, and this is due to the root PE of SSW_GEV being responsi-
ble for data collection. Second, medium PE usage (i.e., 50%) per

8

The Proceedings of the JuliaCon Conferences 6(60), 2024

0

5000

10000

15000

20000

25000

30000

100%S 25%S 50%S 100%M 25%M 50%M 100%L 25%L 50%L

Se
co

nd
s

PCA EAM+PCA Original EAM

Fig. 7: Execution time trends of the PCA in situ analysis and the EAM
component.

0

20000

40000

60000

80000

100000

120000

140000

160000

100%S 50%S 25%S 100%M 50%M 25%M 100%L 50%L 25%L

Fl
oa

tin
g

po
in

t v
ar

ia
bl

es
/s

ec
on

d

Min Ave Max

Fig. 8: Execution time of MPI ranks for the SSW_GEV in situ analysis.

0

500

1000

1500

2000

2500

100%S 50%S 25%S 100%M 50%M 25%M 100%L 50%L 25%L

Fl
oa

tin
g

po
in

t v
ar

ia
bl

es
/s

ec
on

d

Min Ave Max

Fig. 9: Execution time of MPI ranks for the PCA in situ analysis.

node achieves a balanced combination of low-performance varia-
tions and higher average processing rates.

6. Conclusion
This paper proposes a novel in situ infrastructure for coupling Julia
with HPC applications and presents a practical case study of apply-
ing two in situ Julia data analysis methods to atmosphere data for
detecting extreme weather events and characterizing climate pat-
terns. The data presented in this paper suggest five high-level take-
away messages: (1) the in situ infrastructure of coupling Julia with
E3SM has insignificant overhead; (2) our developed SSW_GEV
and PCA in situ modules in Julia are able to detect extreme weather
events and characterize climate patterns with less than 26% of to-
tal module execution time; (3) a key performance factor of apply-
ing this in situ infrastructure is the total memory usage or pres-
sure per node; (4) the development of this in situ infrastructure and
consequent Julia data analysis modules can be highly independent;
(5) future in situ Julia data analysis modules could be plugged-in
without recompiling the whole HPC application. Having a compre-
hensive case study on this in situ infrastructure with production-
level HPC application leads to better support for our future efforts
on applying advanced data analysis methods to existing HPC ap-
plications.

Acknowledgement
Research presented in this paper was supported by the Labora-
tory Directed Research and Development program of Los Alamos
National Laboratory under project number 20200065DR and is
released under LA-UR-22-31718. E3SM was obtained from the
Energy Exascale Earth System Model project, sponsored by the
U.S. Department of Energy, Office of Science, Office of Biologi-
cal and Environmental Research. This research used resources pro-
vided by the Los Alamos National Laboratory Institutional Com-
puting Program, which is supported by the U.S. Department of En-
ergy National Nuclear Security Administration under Contract No.
89233218CNA000001.

7. References
[1] David Andrews, Conway Leovy, and James Holton.

Middle atmosphere dynamics. Academic press, 1 1987.
doi:10.1038/294519a0.

[2] Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Lor-
ing, Berk Geveci, David Lonie, and E Wes Bethel. The
sensei generic in situ interface. In 2016 second workshop
on in situ infrastructures for enabling extreme-scale Anal-
ysis and visualization (ISAV), pages 40–44. IEEE, 2016.
doi:10.1109/ISAV.2016.013.

[3] John Aycock. A brief history of just-in-time. ACM
Computing Surveys (CSUR), 35(2):97–113, 2003.
doi:10.1145/857076.857077.

[4] Mark P. Baldwin, Blanca Ayarzagüena, Thomas Birner,
Neal Butchart, Amy H. Butler, Andrew J. Charlton-Perez,
Daniela I. V. Domeisen, Chaim I. Garfinkel, Hella Garny,
Edwin P. Gerber, Michaela I. Hegglin, Ulrike Langematz,
and Nicholas M. Pedatella. Sudden stratospheric warm-
ings. Reviews of Geophysics, 59(1):e2020RG000708, 2021.
doi:10.1029/2020RG000708.

[5] Andrew C. Bauer, Hasan Abbasi, James Ahrens, Hank Childs,
Berk Geveci, Scott Klasky, Kenneth Moreland, Patrick
O’Leary, Venkatram Vishwanath, Brad Whitlock, and E. W.
Bethel. In Situ Methods, Infrastructures, and Applications on
High Performance Computing Platforms. Computer Graphics
Forum, 2016. doi:10.1111/cgf.12930.

9

http://dx.doi.org/10.1038/294519a0
http://dx.doi.org/10.1109/ISAV.2016.013
http://dx.doi.org/10.1145/857076.857077
http://dx.doi.org/10.1029/2020RG000708
http://dx.doi.org/10.1111/cgf.12930

The Proceedings of the JuliaCon Conferences 6(60), 2024

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017. doi:10.1137/141000671.

[7] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C
Wilson, and Michael I Jordan. Streaming variational bayes.
Advances in neural information processing systems, 26, 2013.
doi:10.48550/arXiv.1307.6769.

[8] Simon Byrne, Lucas C Wilcox, and Valentin Churavy. MPI.jl:
Julia bindings for the message passing interface. In Proceed-
ings of the JuliaCon Conferences, volume 1, page 68, 2021.
doi:10.21105/jcon.00068.

[9] Andrew J. Charlton and Lorenzo M. Polvani. A new look at
stratospheric sudden warmings. Part I: Climatology and mod-
eling benchmarks. Journal of Climate, 20(3):449 – 469, 2007.
doi:10.1175/JCLI3996.1.

[10] Dong Chen, David Irwin, and Prashant Shenoy. Smartsim: A
device-accurate smart home simulator for energy analytics.
In 2016 IEEE International Conference on Smart Grid Com-
munications (SmartGridComm), pages 686–692. IEEE, 2016.
doi:10.1109/SmartGridComm.2016.7778841.

[11] Hank Childs et al. A terminology for in situ visualization
and analysis systems. The International Journal of High
Performance Computing Applications, 34(6):676–691, 2020.
doi:10.1177/1094342020935991.

[12] James Demmel, Laura Grigori, Mark Hoemmen, and Julien
Langou. Communication-optimal parallel and sequential QR
and LU factorizations. SIAM Journal on Scientific Comput-
ing, 34(1):A206–A239, 2012. doi:10.1137/080731992.

[13] Soumya Dutta, Natalie Klein, Li Tang, Jonathan David Wolfe,
Luke Van Roekel, James Joseph Benedict, Ayan Biswas, Earl
Lawrence, and Nathan Urban. In Situ Climate Modeling for
Analyzing Extreme Weather Events, page 18–23. Associa-
tion for Computing Machinery, New York, NY, USA, 2021.
doi:10.1145/3490138.3490142.

[14] Veronika Eyring, Sandrine Bony, Gerald A. Meehl, Cather-
ine A. Senior, Bjorn Stevens, Ronald J. Stouffer, and Karl E.
Taylor. Overview of the coupled model intercomparison
project phase 6 (CMIP6) experimental design and organi-
zation. Geoscientific Model Development, 9(5):1937–1958,
2016. doi:10.5194/gmd-9-1937-2016.

[15] Nathan Fabian, Kenneth Moreland, David Thompson, An-
drew C. Bauer, Pat Marion, Berk Gevecik, Michel Rasquin,
and Kenneth E. Jansen. The ParaView coprocessing library: A
scalable, general purpose in situ visualization library. In 2011
IEEE Symposium on Large Data Analysis and Visualization,
pages 89–96, 2011. doi:10.1109/LDAV.2011.6092322.

[16] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a lan-
guage for flexible probabilistic inference. In International
conference on artificial intelligence and statistics, pages
1682–1690. PMLR, 2018. doi:10.17863/CAM.42246.

[17] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck
Atkins, Greg Eisenhauer, Junmin Gu, Philip Davis, Jong
Choi, Kai Germaschewski, Kevin Huck, et al. ADIOS 2:
The adaptable input output system. a framework for high-
performance data management. SoftwareX, 12:100561, 2020.
doi:10.1016/j.softx.2020.100561.

[18] Jean-Christophe Golaz, Peter M Caldwell, Luke P
Van Roekel, Mark R Petersen, Qi Tang, Jonathan D Wolfe,
Guta Abeshu, Valentine Anantharaj, Xylar S Asay-Davis,
David C Bader, et al. The DOE E3SM coupled model version

1: Overview and evaluation at standard resolution. Journal
of Advances in Modeling Earth Systems, 11(7):2089–2129,
2019. doi:10.1029/2018MS001603.

[19] Jean-Christophe Golaz et al. The DOE E3SM coupled model
version 1: Overview and evaluation at standard resolution.
Journal of Advances in Modeling Earth Systems, 11(7):2089–
2129, 2019. doi:10.1029/2018MS001603.

[20] Richard L Graham, Galen M Shipman, Brian W Barrett,
Ralph H Castain, George Bosilca, and Andrew Lumsdaine.
Open mpi: A high-performance, heterogeneous mpi. In 2006
IEEE International Conference on Cluster Computing, pages
1–9. IEEE, 2006. doi:10.1109/CLUSTR.2006.311904.

[21] William Gropp, Ewing Lusk, Nathan Doss, and Anthony
Skjellum. A high-performance, portable implementation of
the MPI message passing interface standard. Parallel comput-
ing, 22(6):789–828, 1996. doi:10.1016/0167-8191(96)00024-
5.

[22] Amelia Henriksen and Rachel Ward. AdaOja: Adap-
tive learning rates for streaming PCA. arXiv preprint
arXiv:1905.12115, 2019. doi:10.48550/arXiv.1905.12115.

[23] Whitney K Huang, Michael L Stein, David J McInerney,
Shanshan Sun, and Elisabeth J Moyer. Estimating changes in
temperature extremes from millennial-scale climate simula-
tions using generalized extreme value (gev) distributions. Ad-
vances in Statistical Climatology, Meteorology and Oceanog-
raphy, 2(1):79–103, 2016. doi:10.5194/ascmo-2-79-2016.

[24] Sascha Hunold and Sebastian Steiner. Benchmarking ju-
lia’s communication performance: Is Julia HPC ready
or full HPC? In 2020 IEEE/ACM Performance Model-
ing, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), pages 20–25. IEEE, 2020.
doi:10.1109/PMBS51919.2020.00008.

[25] Sian Jin, Dingwen Tao, Houjun Tang, Sheng Di, Suren Byna,
Zarija Lukic, and Franck Cappello. Accelerating parallel
write via deeply integrating predictive lossy compression with
HDF5. In SC22: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages
1–15. IEEE, 2022. doi:10.1109/SC41404.2022.00066.

[26] Christopher Kelly, Sungsoo Ha, Kevin Huck, Hubertus
Van Dam, Line Pouchard, Gyorgy Matyasfalvi, Li Tang,
Nicholas D’Imperio, Wei Xu, Shinjae Yoo, et al. Chim-
buko: A workflow-level scalable performance trace analy-
sis tool. In ISAV’20 In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, pages 15–19,
2020. doi:10.1145/3426462.3426465.

[27] Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brug-
ger, Hank Childs, Berk Geveci, and Cyrus Harrison. The
ALPINE in situ infrastructure: Ascending from the ashes of
strawman. In Proceedings of the In Situ Infrastructures on En-
abling Extreme-Scale Analysis and Visualization, ISAV’17,
page 42–46, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3144769.3144778.

[28] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transformation.
In International Symposium on Code Generation and Op-
timization, 2004. CGO 2004., pages 75–86. IEEE, 2004.
doi:10.1109/CGO.2004.1281665.

[29] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Pod-
horszki, and Chen Jin. Flexible IO and integration for sci-
entific codes through the adaptable io system (ADIOS). In
Proceedings of the 6th International Workshop on Challenges

10

http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.48550/arXiv.1307.6769
http://dx.doi.org/10.21105/jcon.00068
http://dx.doi.org/10.1175/JCLI3996.1
http://dx.doi.org/10.1109/SmartGridComm.2016.7778841
http://dx.doi.org/10.1177/1094342020935991
http://dx.doi.org/10.1137/080731992
http://dx.doi.org/10.1145/3490138.3490142
http://dx.doi.org/10.5194/gmd-9-1937-2016
http://dx.doi.org/10.1109/LDAV.2011.6092322
http://dx.doi.org/10.17863/CAM.42246
http://dx.doi.org/10.1016/j.softx.2020.100561
http://dx.doi.org/10.1029/2018MS001603
http://dx.doi.org/10.1029/2018MS001603
http://dx.doi.org/10.1109/CLUSTR.2006.311904
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.48550/arXiv.1905.12115
http://dx.doi.org/10.5194/ascmo-2-79-2016
http://dx.doi.org/10.1109/PMBS51919.2020.00008
http://dx.doi.org/10.1109/SC41404.2022.00066
http://dx.doi.org/10.1145/3426462.3426465
http://dx.doi.org/10.1145/3144769.3144778
http://dx.doi.org/10.1109/CGO.2004.1281665

The Proceedings of the JuliaCon Conferences 6(60), 2024

of Large Applications in Distributed Environments, CLADE
’08, page 15–24, New York, NY, USA, 2008. Association for
Computing Machinery. doi:10.1145/1383529.1383533.

[30] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang
Chu, and Mohammadreza Bayatpour. The MVAPICH project:
Transforming research into high-performance MPI library
for HPC community. Journal of Computational Science,
52:101208, 2021. doi:10.1016/j.jocs.2020.101208.

[31] Yun Qian, Hui Wan, Ben Yang, Jean-Christophe Golaz, Bryce
Harrop, Zhangshuan Hou, Vincent E Larson, L Ruby Leung,
Guangxing Lin, Wuyin Lin, et al. Parametric sensitivity and
uncertainty quantification in the version 1 of E3SM atmo-
sphere model based on short perturbed parameter ensemble
simulations. Journal of Geophysical Research: Atmospheres,
123(23):13–046, 2018. doi:10.1029/2018JD028927.

[32] PJ Rasch, S Xie, P-L Ma, W Lin, H Wang, Q Tang, SM Bur-
rows, P Caldwell, K Zhang, RC Easter, et al. An overview of
the atmospheric component of the energy exascale earth sys-
tem model. Journal of Advances in Modeling Earth Systems,
11(8):2377–2411, 2019. doi:10.1029/2019MS001629.

[33] Sarat Sreepathi, Vamsi Sripathiy, Richard Mills, Glenn Ham-
mondz, and G Kumar Mahinthakumar. SCORPIO: a scalable
two-phase parallel I/O library with application to a large scale
subsurface simulator. In 20th Annual International Confer-
ence on High Performance Computing, pages 443–451. IEEE,
2013. doi:10.1109/HiPC.2013.6799128.

[34] Neil Thompson and Svenja Spanuth. The decline of comput-
ers as a general purpose technology: Why deep learning and
the end of Moore’s Law are fragmenting computing. Avail-
able at SSRN 3287769, 2018. doi:10.1145/3430936.

[35] David W Walker and Jack J Dongarra. MPI: a standard
message passing interface. Supercomputer, 12:56–68, 1996.
doi:10.1145/169627.169855.

[36] Yu Wang, Natalie Klein, Steven Morley, Vania Jordanova,
Michael Henderson, Ayan Biswas, and Earl Lawrence. Trib-
utaryPCA: Distributed, streaming PCA for in situ dimension
reduction with application to space weather simulations. In
2021 7th International Workshop on Data Analysis and Re-
duction for Big Scientific Data (DRBSD-7), pages 33–39.
IEEE, 2021. doi:10.1109/DRBSD754563.2021.00009.

[37] Zhuo Wang, Yujing Jiang, Hui Wan, Jun Yan, and Xuebin
Zhang. Detection and attribution of changes in extreme tem-
peratures at regional scale. Journal of Climate, 30(17):7035–
7047, 2017. doi:10.1175/JCLI-D-15-0835.1.

[38] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith.
Parallel in situ coupling of simulation with a fully fea-
tured visualization system. In Proceedings of the 11th Eu-
rographics Conference on Parallel Graphics and Visualiza-
tion, EGPGV ’11, pages 101–109. Eurographics Association,
2011. doi:10.2312/EGPGV/EGPGV11/101-109.

[39] Jonathan Woodring, Mark Petersen, Andre Schmeißer, John
Patchett, James Ahrens, and Hans Hagen. In situ Eddy anal-
ysis in a high-resolution ocean climate model. IEEE Trans-
actions on Visualization and Computer Graphics, 22(1):857–
866, 2016. doi:10.1109/TVCG.2015.2467411.

[40] Shaocheng Xie, Wuyin Lin, Philip J Rasch, Po-Lun Ma,
Richard Neale, Vincent E Larson, Yun Qian, Peter A Bo-
genschutz, Peter Caldwell, Philip Cameron-Smith, et al.
Understanding cloud and convective characteristics in ver-
sion 1 of the E3SM atmosphere model. Journal of Ad-

vances in Modeling Earth Systems, 10(10):2618–2644, 2018.
doi:10.1029/2018MS001562.

[41] Yuying Zhang, Shaocheng Xie, Wuyin Lin, Stephen A Klein,
Mark Zelinka, Po-Lun Ma, Philip J Rasch, Yun Qian, Qi Tang,
and Hsi-Yen Ma. Evaluation of clouds in version 1 of the
E3SM atmosphere model with satellite simulators. Journal
of Advances in Modeling Earth Systems, 11(5):1253–1268,
2019. doi:10.1029/2018MS001562.

11

http://dx.doi.org/10.1145/1383529.1383533
http://dx.doi.org/10.1016/j.jocs.2020.101208
http://dx.doi.org/10.1029/2018JD028927
http://dx.doi.org/10.1029/2019MS001629
http://dx.doi.org/10.1109/HiPC.2013.6799128
http://dx.doi.org/10.1145/3430936
http://dx.doi.org/10.1145/169627.169855
http://dx.doi.org/10.1109/DRBSD754563.2021.00009
http://dx.doi.org/10.1175/JCLI-D-15-0835.1
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.1109/TVCG.2015.2467411
http://dx.doi.org/10.1029/2018MS001562
http://dx.doi.org/10.1029/2018MS001562

	Introduction
	Background and Related Work
	E3SM
	Julia
	In Situ Data Analysis
	Related Work

	In Situ Infrastructure
	Overall Design
	Fortran Interface
	C Interface
	Julia Interface
	Noninvasive Compilation

	Data Analysis Modules
	Sudden Stratospheric Warming (SSW)
	TributaryPCA

	Experiments
	Setup
	In Situ SSW Detection and Characterization Results
	PCA Results
	Performance
	Problem and Processing Element (PE) Layout
	Framework Performance
	E3SM performance trends
	Performance variations across MPI ranks

	Conclusion
	References

