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Abstract

The study of multiphase flow is essential for designing chemical reactors such as fluidized bed reactors (FBR), as a
detailed understanding of hydrodynamics is critical for optimizing reactor performance and stability. An FBR allows
scientists to conduct different types of chemical reactions involving multiphase materials, especially interaction be-
tween gas and solids. During such complex chemical processes, the formation of void regions in the reactor generally
termed as bubbles, is an important phenomenon. The study of these bubbles has a deep implication in predicting
the reactor’s overall efficiency. But physical experiments needed to understand bubble dynamics are costly and non-
trivial due to the technical difficulties involved and harsh working conditions of the reactors. Therefore, to study such
chemical processes and bubble dynamics, a state-of-the-art computational simulation MFIX-Exa is being developed.
Despite the proven accuracy of MFIX-Exa in modeling bubbling phenomena, the large-scale output data prohibits
the use of traditional post hoc analysis capabilities in both storage and I/O time. To address these issues and allow
the application scientists to explore the bubble dynamics in an efficient and timely manner, we have developed an
end-to-end analytics pipeline that enables in situ detection of bubbles, followed by a flexible post hoc visual explo-
ration methodology of bubble dynamics. The proposed method enables interactive analysis of bubbles, along with
quantification of several bubble characteristics, enabling experts to understand the bubble interactions in detail. Pos-
itive feedback from the experts has indicated the efficacy of the proposed approach for exploring bubble dynamics in
very-large-scale multiphase flow simulations.

Keywords: In situ data processing, big data analytics, statistical feature extraction, data reduction, multiphase flow
simulation, particle data, feature tracking, HPC, interactive visualization, collaborative development

1. Introduction

With recent advancements in parallel computing ca-
pabilities, application scientists are currently build-
ing high-resolution computational models to study the
working principles of chemical looping reactors (CLR)
by simulating various types of multiphase flows. The
study of the temporal evolution and dynamics of bub-
bles in a fluidized bed is of prime interest. In the flu-
idization process, bubbles (void regions in the fluidized
beds) are formed under certain physical conditions, in-
teracting with each other as shown in Figure 1. Under-
standing the dynamics of such bubbles for these systems
is paramount as the formation of large, fast-moving bub-
bles in fluidized beds causes poor gas/solids mixing,
lowering conversion efficiency and stability.

A massively parallel computational fluid dynam-
ics–discrete element model (CFD-DEM) code, MFIX-
Exa [1] is being developed by the National Energy Tech-

nology Laboratory (NETL) to study multiphase flows
in detail. Data generated from MFIX-Exa enables in-
depth study of bubble dynamics. However, both compu-
tational cost and data size from a single run of the simu-
lation can be large. As a result, the traditional approach
of using post hoc analysis and visualization is becom-
ing prohibitively time-consuming and a limiting factor
in the ability to derive insight from the data. The bot-
tleneck stems from I/O speed limitations and extreme
output data sizes compared to the ever-increasing com-
puting speed. Storing detailed data for individual time
steps (e.g., particle positions and velocities in addition
to fluid field quantities) is becoming less viable. Scal-
able and timely visualization and analysis of such data
sets pose significant challenges.

The main goal of this work is to develop a practical
and reliable solution for domain experts such that they
can analyze and visualize bubble dynamics in fluidized
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Figure 1: A schematic diagram of a fluidized bed where the bubble
phenomenon is shown (left). A visualization of a particle field with
bubbles produced by MFIX-Exa simulation (right).

beds in a timely manner using large three-dimensional
data sets generated from MFIX-Exa. The experts are in-
terested in understanding the evolution of bubbles and
how various characteristics of bubbles evolve. They
wish to explore relationships between bubble character-
istics and study their velocity profile as bubbles interact
with each other. Producing these bubble data sets re-
quires lengthy simulations in supercomputers. The ex-
treme size of the output data is prohibitive to transfer-
ring the full data to persistent storage. Therefore, the
experts are looking for new solutions that will enable
the extraction of important information from the data
accurately, leading to a significant amount of storage
reduction. Finally, domain scientists need effective and
interactive visualization tools that can present the bub-
ble dynamics results via intuitive and simple visual en-
coding that can be explored, compared, and contrasted
interactively and interpreted readily.

In situ analysis techniques provide an attractive so-
lution to address these issues. Since in situ analy-
sis is done as the data is produced in the supercom-
puter memory, it provides the opportunity to analyze the
data in real-time and extract the important information
needed to study bubble dynamics. In situ processing can
achieve significant data triage and reduction as has been
shown recently by many researchers [2, 3, 4]. However,
to understand bubble dynamics in detail, expert-in-the-
loop interactive visual exploration is necessary where
experts can query and filter different bubbles and track
them to glean insights. This process is time-intensive
and so how much of the proposed analysis pipeline
should be done in situ and which analyses should be
deferred to the post hoc phase needs to be decided care-
fully to balance the workload between in situ processing
and post hoc analysis.

In this work, we present an analysis technique that
combines both in situ and post hoc analysis paradigms
resulting in an effective workflow to study bubble dy-
namics in fluidized beds using data generated from
MFIX-Exa simulation. Since the features of interest, the
bubbles, referred to as void regions, have low particle
density, they lack a precise descriptor. In the absence of
a precise definition, we employ a statistical distribution-
based feature detection technique that has been shown
effective for the detection of uncertain features [5, 6, 7].
To reliably detect bubbles, we first compute the particle
density field from unstructured raw particles and then
model the density field as a homogeneously partitioned
distribution field. Finally, the statistical similarity of
each partition to that of the target bubble feature is quan-
tified. This similarity-based classification of the particle
density field results in a new scalar field called the bub-
ble similarity field (BSF), where each point indicates the
possibility of being part of a bubble. Besides the BSFs,
to capture the velocity dynamics profile of the bubbles,
we also compute another scalar field from the particle
velocity data where each point reflects the particle rise
velocity. These two derived scalar fields are stored to
disk for post hoc analysis.

During the post hoc analysis, the BSFs and the par-
ticle rise velocity-based scalar fields (PVFs) are ex-
plored in detail to analyze and visualize bubble dynam-
ics. Based on the degree of the similarity values, the
BSFs are segmented, and connected component anal-
ysis is applied to isolate individual bubbles. For each
bubble, several salient characteristics such as bubble as-
pect ratio, rise velocity, volume, and position are com-
puted. To study the temporal evolution of bubbles, an
overlap-based tracking algorithm [8, 9] is applied. An
overlap-based tracking algorithm is suitable for our ap-
plication since we process the data in situ with sufficient
temporal frequency to ensure feature overlap between
consecutive time steps. Besides tracking individual bub-
bles, all the bubbles from a specific time step can also
be tracked collectively to provide a comprehensive view
of the bubble dynamics. The results of computed bub-
ble dynamics and tracking are presented to the experts
through Cinema-based interactive viewers [10], which
are found to be effective and intuitive in our application
study. In addition to the Cinema-based interactive tools,
the bubble tracking results are also visualized using an
interactive 3D visualization interface so that the users
can study bubble evolution directly in the 3D domain.
Positive feedback from the domain scientists demon-
strates the efficacy of our proposed technique in ana-
lyzing bubble dynamics in multiphase flow simulations.
Therefore, our contributions in this work are threefold:
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C1. We develop a novel in situ analysis workflow for
MFIX-Exa simulation and employ a statistical fea-
ture detection algorithm to characterize bubble fea-
tures in the data.

C2. We propose post hoc analysis and visualization
techniques that utilize only the reduced in situ
generated feature-aware data summaries to extract,
isolate, track, and compare bubbles in an effective
and timely manner.

C3. We propose a pragmatic and flexible end-to-end
feature-driven analytics workflow for domain ex-
perts that enables in-depth exploration of bubble
dynamics in multiphase flow simulations.

2. Related Work

2.1. In situ analysis

The need for in situ data analysis has grown signif-
icantly in recent years to address the problems aris-
ing from slow disk I/O. The visualization community
has developed several tools for direct in situ render-
ing of data [11, 12, 13, 14]. All these tools can pro-
duce high-quality visualization results in situ. However,
when an exploratory analysis is needed, conducting the
complete analysis in situ would slow down the simu-
lation significantly. Therefore, a hybrid data analysis
paradigm is becoming popular where the data is pro-
cessed in situ to summarize and extract important in-
formation in a compact format and store it to disk for
flexible post hoc analysis [3, 15]. This idea has been
pursued by many researchers to develop various in situ
data summarization algorithms. An image-based in situ
data reduction strategy has been shown effective [2, 16].
Statistical distribution-based in situ data summarization
techniques have become popular in recent years due to
their compactness and flexibility [4, 17, 18]. Statistical
downsampling for in situ data reduction has also been
explored [19, 20, 21, 22]. An in situ trigger infrastruc-
ture has been developed by Larsen et al. [23]. In this
current work, we employ an in situ distribution-based
feature detection strategy for efficiently classifying bub-
ble features from particle data sets.

2.2. Statistical feature exploration

As the complexity of scientific features has grown,
the use of statistical techniques for exploring features
in scientific data sets has gained popularity among vi-
sualization researchers. Integral histograms were used
by scientists to explore local features in scientific data

sets [24, 25]. To advance the query-driven visualiza-
tion capabilities, Gosink et al. [26] used distribution
functions for feature analysis. For an enhanced under-
standing of features in data sets, Johnson and Huang [6]
allowed querying on distributions via fuzzy feature
matching. Features in ensemble data sets were explored
using generalized boxplot-based visualizations [27, 28].
Thompson et al. [29] introduced the idea of hixel, which
enabled data summarization as well as the preservation
of features in the reduced data sets. Local distribution-
based feature extraction and searching was also ex-
plored by several researchers [7, 17, 30, 31, 32]. In
our work, we follow a similar approach where the data
is modeled using local region-wise distribution models,
and then bubble features are detected based on statistical
similarity.

2.3. Feature tracking

Feature tracking is considered one of the fundamental
visualization tasks for analyzing time-varying data fea-
tures. A significant amount of research has been done
on developing different feature tracking algorithms. Sil-
ver et al. [8, 33] proposed one of the earliest feature
tracking algorithms that used overlap for feature cor-
respondence. An attribute-based feature tracking was
proposed by Samatanay et al. [34]. Earth mover’s dis-
tance was used for feature tracking by Ji and Shen [35].
For tracking features collectively as a group, Ozer et al.
proposed techniques for tracking group dynamics [36].
Muelder and Ma introduced a predictor-corrector-based
approach for accurate feature tracking. By utilizing
global knowledge from all time steps, a merge tree
guided feature tracking was proposed by Saikia and
Weinkauf [37]. Feature tracking in joint particle/volume
data sets was recently proposed by Sauer et al. [38].
Dutta and Shen developed a distribution-based fuzzy
feature tracking algorithm for uncertain features [5]. A
comprehensive survey of feature tracking can be found
in [39]. In this work, we have used an overlapping-
based feature tracking algorithm. By sampling the data
frequently during in situ processing, we ensure that
overlapping-based tracking can be applied in our appli-
cation to solve the feature correspondence.

3. Application Background and Motivation

3.1. Application Background

Understanding bubble dynamics in fluidized beds is
important to scientists studying multiphase flows to
design efficient, cost-effective chemical looping reac-
tors (CLR). In a typical CLR, oxygen from a solid
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Figure 2: Selection of target bubble feature directly from the data.

oxygen carrier, such as metal oxide, is used to com-
bust fossil fuels [40]. In a standard configuration, the
solid oxygen carrier circulates between two fluidized
beds, preventing the fuel from directly contacting the
air [41]. Large numbers of bubbles can form, caus-
ing poor gas/solids mixing and lowering conversion
efficiency. Using MFIX-Exa, scientists can analyze
and visualize various bubbling phenomena occurring
in fluidized beds under different physical conditions.
MFIX-Exa is one of the simulation codes in the U.S.
Department of Energy’s Exascale Computing Project
(ECP) [40]. It is expected to achieve exascale perfor-
mance soon, enabling high-fidelity simulations. Since
storing all the high-resolution raw data is not practical
due to I/O limitations, developing an in situ analysis
capability is crucial for domain scientists. MFIX-Exa
simulation code is being built using kernels from the
existing MFiX project [42], with a software structure
redesign using AMReX [43, 44] as its foundation. AM-
ReX is a block-structured AMR-based software frame-
work designed for building massively parallel applica-
tions. MFIX-Exa can produce both mesh and particle
data based on the requirements of the application. This
work utilized the unstructured raw particle data to study
bubble dynamics.

3.2. Motivation

Our motivation comes from surveying existing ca-
pabilities and from discussions with the developers of
MFIX-Exa about the limitations of current tools for an-
alyzing bubble dynamics. Presently, the MFIX-Exa ex-
perts rely on a post-processing workflow with full res-
olution raw data using tools such as ParaView [45] or
VisIt [12]. At current simulation scales, the experts skip
on the order of hundreds of time steps when storing data
to disk to keep the total data size tractable, possibly
missing meaningful events. Given the complex bubble
interactions, it is critical to have access to a sufficiently

Figure 3: An overview of the proposed end-to-end analysis pipeline.

high temporal resolution of the data so that reliable fea-
ture tracking can be done. As the scale of the simula-
tion is expected to grow significantly, the frequency of
raw data storage will likely go down even more to ad-
dress I/O limitations. Post-processing workflows will
not scale, making in situ processing critical. Lastly, it
can be overwhelming for the domain scientists to ana-
lyze and visualize such a large number of bubbles using
generic visualization tools as they do not address the
specific needs the experts have [46].

4. Domain Requirements and Overview

4.1. Domain Specific Requirements

After discussing with the developers of MFIX-
Exa simulation, we have identified several important
domain-specific requirements and are listed below:

R1. The storage of full-resolution raw particle data will
not be possible with sufficient temporal fidelity, re-
quiring an in situ analysis driven workflow to ex-
tract and summarize the important bubble specific
information in situ and store reduced data sum-
maries to disk for flexible post hoc analysis.

R2. The experts need the ability to analyze, visualize,
and filter bubbles based on various bubble char-
acteristics to explore relationships among differ-
ent bubble characteristics such as bubble volume,
shape, velocity, etc.

R3. The experts want to track the evolution of bubbles
from a selected time step to compare and contrast
their interactions and dynamics. They want to vi-
sualize the velocity profile of the particles around
detected bubbles to answer questions such as: Is
the rise velocity of bubbles consistent or varying?
What is the relationship between bubble volume
and rise velocity? How do bubbles merge (or
split)?

R4. Domain experts also need customized visualiza-
tion tools to interactively and intuitively visualize
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the analysis results and study bubble dynamics in
the 3D spatial domain.

4.2. Feature Selection and Overview of Our Workflow
Since the features of interest lack a precise descriptor,

we start by having the users select a region of interest di-
rectly in the data offline, based on domain expertise, to
highlight a region with low particle density. An exam-
ple selection is shown in Figure 2. The bubble feature is
highlighted using a 3D interactive box filter. Next, a par-
ticle density field is estimated from the unstructured par-
ticle data, shown in the center image of Figure 2. From
this structured density scalar field, all the grid points
that fall within the box filter are collected and a Gaus-
sian distribution is estimated using their particle density
as shown in the rightmost image of Figure 2. The use
of a single Gaussian distribution to model such bubbles
is sufficient as the bubbles in the density field generally
form a homogeneous region with minimal density vari-
ations. This keeps the feature description simple and
compact. A mixture of Gaussians can be used if neces-
sary to capture a complex feature as a distribution. This
Gaussian distribution is used as a statistical representa-
tion of the target feature and statistically similar regions
to this distribution can be considered as part of potential
bubbles. The use of distributions as a feature descrip-
tor has been shown effective by researchers in the past
[5, 7, 48, 49, 50]. Distribution-based feature descrip-
tors are not sensitive to object shape, an advantage in
dealing with non-rigid, shape-changing objects such as
bubbles [49].

With this distribution-based bubble feature template,
detection of statistically similar regions in the data is
performed in situ as dicussed in Section 5. The pro-
posed end-to-end analysis pipeline is shown in Figure 3.
As can be seen, during the in situ processing, the raw
particle data is accessed and the statistical feature de-
tection algorithm is applied to extract bubble features
from the particle field compactly and the compact re-
duced fature-specific data is stored into disks for post
hoc analysis. The in situ algorithm generates two scalar
fields (BSF and PVF discussed later in Sections 5.3 and
5.4). In the post hoc analysis, the BSFs are segmented,
the bubbles are isolated and their various characteris-
tics are measured (Section 6.1). A feature tracking al-
gorithm is employed to track the evolution of bubbles
(Section 6.2). All these analysis results are presented to
the experts using interactive visualization tools to en-
able the experts to interact, filter, and track bubbles,
exploring how they evolve (Section 6.1). A feature
tracking algorithm is employed to track the evolution
of bubbles (Section 8). By visualizing the particle rise

velocity-based scalar fields (PVFs), they can understand
how the particles around the bubbles behave as the bub-
bles evolve. We also provide summary statistics and
scatterplot matrices (SPLOM) to show the relationships
between bubble attributes and their time evolution.

5. In Situ Modeling and Bubble Detection

In this section, we describe the in situ data algorithm
employed to classify bubbles from the raw particle data,
generate a bubble similarity field (BSF), and compute a
particle rise velocity field (PVF) used during post hoc
analysis. By doing so, we achieve significant data triage
and enable flexible and scalable post hoc bubble dynam-
ics analysis.

5.1. Particle Field to Density Field Conversion

In MFIX-Exa, the fluid is model by the particle-
unresolved multiphase Navier-Stokes equations which
are solved on a structured grid with an embed-
ded boundary formulation used to represent the non-
rectangular boundary geometry. Conversely, each parti-
cle in the system is modeled as an individual sphere and
a linear-spring dashpot (LSD) model is used to com-
pute forces arising from particle-particle and particle-
wall collisions. This one-to-one approach to modeling
solid particles generates a significant amount of data.

Given this large-scale particle field, since the target
bubble features are continuous regions with low particle
densities, we first convert the particle field to a density
field. Density estimation is often regarded as a funda-
mental step necessary for sampling particle fields into
a structured continuous representation [51]. We have
used a spatial histogram-based technique to group par-
ticles into non-overlapping bins and then a density field
is finally constructed. As the particles are distributed
across various computing nodes we compute the his-
togram in the same distributed setting. A local 3D his-
togram using particle locations is first constructed at
each MPI process by binning the 3D locations of all
particles available to each processor. A 3D histogram
is required since we are binning particles’ 3D locations
to estimate spatial particle density. The number of bins
and bin widths on each local processing unit is the same
and is estimated from the global bounds. We are using
uniform bin widths in this work. These global bounds
are the bounds of the physical simulation domain, i.e.,
the domain of the fluidization bed, in which we are cre-
ating the 3D histogram. Finally, the partial histograms
are combined to construct the global density histogram
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Raw Particle data Particle Density field SLIC based partitioning Distribution field Bubble Similarity field

(a) (b) (c) (d) (e)

Particle Rise Velocity field
(f)

Figure 4: Steps of in situ processing for data transformation, modeling, and bubble detection. We start with the particle data (a) and convert it to
a particle density field (b). The particle density field is then partitioned into local homogeneous regions (c), and a distribution field is constructed
(d). Finally, a bubble similarity field (BSF) (e) is generated by comparing the distribution field with the user-provided target feature. Besides the
BSF, a particle rise velocity field (PVF) (f) is also estimated to analyze the particle velocity profiles during post hoc analysis.

by using a parallel reduction operation overall process-
ing units. Each bin in this global spatial histogram rep-
resents particle counts in a local spatial region. The
global 3D histogram is transformed into a 3D regu-
lar grid-based scalar field where each 3D bin center is
mapped to a voxel in the regular grid data and the parti-
cle count for that bin is assigned as the particle density
value at that voxel. Details of the generation of this reg-
ular scalar field from the histogram can be found in [52].
Other particle density estimation techniques [51] can be
used in this step, however, we found that using a spatial
histogram-based approach to convert the particle data
into a density field can be efficiently estimated in situ,
keeping the computational cost low during in situ pro-
cessing. Figure 4b shows an example estimated density
field for the raw particle field depicted in Figure 4a.

5.2. Homogeneity-guided Density Field Modeling
Given the lack of a precise descriptor, it is non-trivial

to find a consistent hard density threshold value that can
be used for isolating low-density regions from the den-
sity field. The statistical approach allows the classifica-
tion of the in situ generated density field into a feature
similarity field where regions having high feature simi-
larity values can be explored as bubbles. Since the bub-
bles are contiguous regions with low particle density, to
detect them accurately, we follow a local region-wise
statistical data modeling approach to first convert the
density field into a distribution field and then classify
the distribution field to produce a bubble similarity field
(BSF), based on the user-specified target bubble distri-
bution (see Section 4.2).

Our work advocates a clustering-based data partition-
ing scheme to maximize homogeneous data values in
each partition. The high degree of homogeneity allows
for more compact distribution-based data modeling with
reduced estimation errors. We have used the Simple

Linear Iterative Clustering (SLIC) algorithm [53] for
producing a homogeneous partitioning of the density
field. SLIC is a supervoxel generation algorithm that
has been shown to achieve state-of-the-art results both
in terms of quality and computational cost.

SLIC is a variant of the local K-means clustering al-
gorithm which works within a predefined local neigh-
borhood while clustering the data. Hence, the total
number of distance computations required by SLIC is
greatly reduced, resulting in a significant computational
speed-up. The algorithm expects the user to specify the
approximate size of clusters, a×b×c. The total number
of clusters is estimated and cluster centers are initialized
regularly. Since the expected size of a cluster is a×b×c,
the search for similar data points is restricted within a
neighborhood 2a × 2b × 2c around each cluster cen-
ter [53]. This key strategy significantly reduces the total
number of distance computations required. The tech-
nique iteratively assigns all the data points to the best
representative and when the assignments do not change
over consecutive iterations, SLIC terminates. In order
to keep a balanced contribution from the data similar-
ity and spatial proximity while assigning data points to
a representative cluster, SLIC uses a distance function
that considers both the data value similarity as well as
their spatial proximity. In this work, we used the dis-
tance function as suggested in [54]:

D(x, y) = γ · ||cx − py||2+(1 − γ) · |vx − vy| (1)

Here, cx is the location of the cluster center x and py is
the location of data point y. vx and vy are the scalar val-
ues at xth cluster center and yth data point respectively.
The value of γ (0 <= γ <= 1, and γ + (1 − γ) = 1) is
chosen based on the requirement to specify weightage
for spatial vs value components. We have set γ = 0.2
for this work to assign higher weightage on data values.
Such a distance function ensures that the produced su-
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pervoxels are spatially contiguous and as homogeneous
as possible. Note that since the global density field is
constructed in the root processing node by combining
contributions from all other processing units, we com-
pute SLIC partitioning only in the root node using the
global density field.

Figure 4c shows the result of SLIC algorithm ap-
plied to the density field in Figure 4b. In this example,
SLIC is performed in image space for illustration. In in
situ, SLIC is performed on the 3D density field. For a
more detailed description of SLIC, readers are referred
to [53]. After SLIC, density values of data points in
each SLIC partition are modeled using a statistical dis-
tribution to construct the distribution field, resulting in
a compact representation. Since SLIC produces a suf-
ficiently homogeneous partitioning, a single Gaussian
distribution for each partition is used to model the den-
sity values as shown in Figure 4d. Density values of
data points in each SLIC cluster are modeled using a
Gaussian and by doing so, the density field is converted
to a distribution field.

5.3. Bubble Similarity Field (BSF) Creation

The SLIC-based distribution field is further classified
to produce bubble similarity fields (BSF) where high
similarity values indicate a higher chance of being part
of a bubble. We estimate the density field and collect
density values from the user highlighted region (Sec-
tion 4.2), shown in Figure 2, to define the Gaussian
distribution used as the statistical signature of a bubble
in the analysis pipeline. During in situ processing, we
compute the statistical similarity of each cluster’s Gaus-
sian distribution to that of the user-provided signature
Gaussian. By doing so, each cluster gets a statistical
similarity score. Finally, a new scalar field, called Bub-
ble Similarity Field (BSF), is constructed where each
point indicates the degree of statistical similarity to that
of the signature bubble distribution. The Bhattacharyya
distance [55] is used to measure the similarity between
two Gaussian distributions. Since the Bhattacharyya
distance provides a closed-form solution and can be
computed efficiently, it is found to be suitable for es-
timating the distance between Gaussians in the in situ
environment. The Bhattacharyya distance, DBh(g1, g2),
between two Gaussians is defined as:

(2)
DBh(g1, g2) =

1
8

(µ1 − µ2)T

(
σ1 + σ2

2

)−1
(µ1 − µ2)

+
1
2

ln
[ |σ1+σ2

2 |√
|σ1||σ2|

]

where µ1, µ2 and σ1, σ2 are the mean and standard de-
viation of the Gaussian kernels g1, g2 respectively. A
lower value of DBh(g1, g2) indicates a higher degree of
similarity. Before storing values in the similarity field,
we normalize the DBh(g1, g2) values and subtract it from
1 to be able to interpret them as similarity scores in post
hoc analysis phase. Hence, the values of the BSF range
from 0-1 where high values indicate higher statistical
similarity to the target feature. Again note that the BSF
is computed in the root processing node only and this
step does not need any additional data communication.
Visualization of a BSF is provided in Figure 4e. It can
be seen that the low particle density regions in Figure 4a
are classified as the bubbles with high similarity values
(the blue regions).

5.4. Particle Rise Velocity Field (PVF) Generation

While studying bubble dynamics, domain experts
are also interested in the particle velocity profile
around each bubble as they rise through the fluidized
bed. Therefore we also estimate a second scalar
field which summarizes the vertical rise velocity (x-
direction/upward direction) component of the particle
velocity field. Since the primary direction of the bub-
bles are upward, considering just the x-velocity compo-
nent is sufficient for our analysis. This second scalar
field is stored along with the BSF to enable flexible
bubble dynamics analysis. The estimation of particle
rise velocity scalar field (PVF) follows similar steps that
were used for creating the 3D spatial histogram and is
again distributed. In this case, the average rise velocity
(x-direction) of the particles for each bin is estimated.
First, the cumulative rise velocity of all the particles is
computed for each bin locally, and then, using a paral-
lel reduction operation, the global velocity histogram is
computed. Finally, the average rise velocity per bin is
computed by dividing the global 3D velocity histogram
by the global density histogram, which is already es-
timated for computing the particle density field. The
particle velocity histogram is then converted to a scalar
field following similar steps used for the generation of
the density field from the density histogram. A visual-
ization of PVF for the raw particle data, shown in Fig-
ure 4a, is provided in Figure 4f. The red and yellow-
ish regions in this image indicate particles with positive
rise velocities, i.e., the particles in those regions are ris-
ing upward, and the blue regions contain particles that
are moving downward. At the end of in situ processing,
these two scalar fields are stored on the disk.
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(a) (b) (c)

Top most component is not a true bubble

and will be discarded

Figure 5: (a) Visualization of bubble similarity field, (b) Segmented
bubbles, (c) Individual bubbles as connected components.

6. Post Hoc Bubble Dynamics Analysis

6.1. Bubble Extraction and Characterization

To study details about the bubbles, the first step is
to extract individual bubbles from the BSFs. Similar-
ity values in BSF range from 0 to 1 and higher valued
regions indicate a higher possibility of being part of a
bubble. Experts can inspect several BSFs interactively
at the beginning of analysis and specify the desired de-
gree of similarity value to segment the BSFs. This simi-
larity threshold value is applied to all BSFs from all the
time steps to produce consistent segmentation results.
Next, a connected component algorithm is applied to
the segmented results and each component is treated as
a separate bubble. Figure 5 shows results of this bub-
ble extraction process for a time step. Figure 5a shows
the BSF with blue regions indicating different bubbles.
Figure 5b depicts the results when segmentation is per-
formed for a similarity threshold value of 0.92. Finally,
results of the connected component algorithm are shown
in Figure 5c where different bubbles are colored by their
unique component ids. Note that the simulation data of-
ten produces a void region on the top of the fluidized
bed and has very low particle density. Although it is
also detected as one of the potential bubbles (marked in
Figure 5b and Figure 5c), these void regions are not con-
sidered true bubbles and we ignore this during analysis.
Once all bubbles are extracted, several characteristics
for each bubble feature are computed. The salient char-
acteristics [46, 47] are considered volume, centroid, and
aspect ratio of each bubble. The approach in [34] was
used for estimating bubble volume and centroid. For
aspect ratio, we used the measure provided in [46].

6.2. Bubble Tracking

A critical requirement of domain experts is to be able
to analyze the temporal dynamics of the bubbles on
demand. To achieve this, we modified a well-known

overlap-based feature tracking algorithm [8] by incor-
porating an estimation of feature matching confidence
to it. In the traditional volume tracking algorithm, the
feature correspondence problem was solved by find-
ing overlapping objects in consecutive time steps. This
technique assumes the availability of sufficient tempo-
ral resolution of data so that overlapping-based corre-
spondence can correctly identify the features over time.
However, there exists a minimal chance of incorrect cor-
respondence. To address this issue, we have used the
Dice similarity index to detect bubble overlapping in
consecutive time steps. Dice index allows estimation
of the amount of overlap between two sets with a mini-
mum of 0 indicating no overlap, and a maximum value
of 1 for complete overlap. Formally for two sets, A and
B, their Dice index DI(A, B) is measured as:

DI(A, B) =
2 |A ∩ B|
|A| + |B|

(3)

The use of the Dice index allows us to detect the overlap
between two segmented bubbles in 3D and also quantify
a similarity score reflecting the degree of matching. The
Dice index value can be interpreted as matching confi-
dence and when an abruptly low value is found, such
a time step is flagged for further investigation. In our
visualization tool, values of the Dice indices are pre-
sented so that the experts can make informed judgments
on the tracking results. In bubble evolution, it is impor-
tant to study the different evolutionary events that the
bubbles go through such as splitting and merging with
neighboring bubbles. In a typical fluidized bed sim-
ulation, small bubbles form at the bottom of the bed,
merging and splitting as they rise through the fluidiza-
tion zone before bursting out at the top. In our method,
we track bubble volumes to explore potential merge and
split events. During tracking, a sudden rise in the bubble
volume indicates a merge event while a significant drop
in volume would indicate splitting [5]. From the track-
ing results, we also estimate the bubble rise velocity, an
important bubble characteristic of interest to the domain
experts. The bubble rise velocity is computed from dif-
ferences of the centroids of matched bubbles from the
consecutive time steps.

7. Visual Exploration of Bubble Dynamics

Next, we present bubble dynamics through several in-
teractive visualization interfaces such that the experts
can query, filter, and track bubbles to understand their
interaction. In this work, we have used CinemaEx-
plorer [10] tool to visualize image-based bubble dynam-
ics. Note that we use this image-based approach for
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Figure 6: Interactive query of multiple bubble characteristics using
the query panel of CinemaExplorer. Bubbles that fall within a range
of aspect ratio and volume are queried in this example.

the experts to quickly and interactively study the bub-
ble dynamics. However, we allow detailed investigation
of bubbles and their tracking in the 3D domain when
desired.

In our simulation test cases, the Y-dimension is typi-
cally smaller compared to the other two dimensions (X
and Z), so the experts visualize the bubbles from the
X-Z plane, which maximizes the viewing area of the
simulation domain. Therefore, after bubbles are ex-
tracted, we use volume rendering algorithm to render
each bubble viewed from the X-Z plane and store visu-
alizations as images into a database following the Cin-
ema specifications [56]. First, we visualize the field in
ParaView [45] and generate a Python-based ParaView
rendering script containing the rendering specifications
and then run the script to produce images of all the bub-
bles in a batch mode. All rendering parameters (viewing
and camera parameters, and transfer functions for vol-
ume rendering) are kept fixed. Note that this operation is
done once and takes only ∼5 minutes to produce all the
images. This results in an image-based database that in-
cludes bubble characteristics and a visual representation
of the bubbles. The intuitive and well-known visualiza-
tion techniques used in CinemaExplorer, such as Paral-
lel Coordinates Plots (PCP) and Scatterplots are used to
present the results to the domain experts. Along with
these interactive tools, we have also developed a visual-
ization tool that allows visualization of bubble tracking
directly in the three-dimensional domain for the experts
to study bubble interaction in 3D.

7.1. Overview Visualization of Bubble Characteristics
The first step in our visual analysis pipeline uses Cin-

emaExplorer to study overall bubble characteristics so
that the experts can obtain a general understanding. A
typical CinemaExplorer viewer has three panels as high-
lighted in Figure 7: (A) the query panel, (B) the Parallel

Coordinates Plots (PCP) panel, and (C) image spread
panel. The query panel (A) provides multivariate query
capabilities as shown in Figure 6. In Figure 6, data is fil-
tered using aspect ratio and volume attributes. The red
dotted line shows the central value around which the fil-
tering is done, and the dotted red lines show the filtering
range. Panel (B) shows the PCP where the bubble char-
acteristics are represented as parallel axes and the char-
acteristics of each bubble are represented by a polyline.
The PCP supports interactive brushing and axis reorder-
ing. The visualization of the bubbles is shown in the
image spread view, Panel (C). The image size can be ad-
justed using a slider on the top right corner of the panel.
Filtering in PCP or query panel automatically updates
results in the image view. An additional tab provides
a scatterplot visualization of any two selected bubble
characteristics (see, e.g., Figure 8). Such scatterplots
are found to be effective in displaying the temporal evo-
lution of bubble characteristics. This analysis tool and
capabilities address the R2 of the domain experts men-
tioned previously in Section 4.1.

7.2. Visualization of Bubble Tracking

7.2.1. Visualization Using Cinema-based Viewer
Once users identify an interesting bubble, it is tracked

over time and the analysis result is presented using Cin-
emaExplorer as shown in Figure 7. In this example,
a relatively large bubble was selected from time step
116 and tracked both forward and backward in time.
Note that the PCP has two axes showing information
about the rise velocity and the values of the Dice index
estimated during tracking. The Dice index values are
mostly high, indicating stable tracking results. Using
this visualization, the experts can interactively explore
the life cycle of the selected bubble. The CinemaEx-
plorer image spread panel presents the visualization of
the bubbles side-by-side. As discussed above, users can
also filter results based on the bubble attribute values by
using both the PCP and the query panel. The scatterplot
functionality in the CinemaExplorer viewer is useful to
investigate the details of the various evolutionary events
such as merging and splitting. In Figure 8, the scat-
terplot of bubble volume vs time steps is shown at the
top. In the simulation, bubbles are generally formed at
the bottom of the bed and rise upward, moving through
the fluidized bed. Time steps when bubble volumes
abruptly change are easily identified in the scatterplot.
Several such events are highlighted in the plot with the
specific events that caused the change in bubble volume.
The visualization of these events for this bubble is pro-
vided at the bottom of Figure 8. It can be seen that,
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Figure 7: Visualization of bubble characteristics and tracking using CinemaExplorer interface. The PCP shows relevant bubble characteristics such
as aspect ratio, position of bubbles in the rising direction, time step, etc. Visualizations of tracking of a specific bubble is shown at the bottom
panel. This initial bubble was selected from time step = 116 with feature id = 18 for tracking.

Figure 8: (Top) Volume vs time scatterplot revealing bubble merge
and split events with the initial bubble selected at time step=116 and
feature id=18. (Bottom) Detected events are shown for different time
steps.

indeed, the abrupt increase in bubble volume indicates
merge events and split events correspond to a sudden
decrease in bubble volume.

7.2.2. Visualizing Bubble Tracking in 3D Domain
As mentioned above, many characteristics of the

tracked bubbles can be analyzed using the CinemaEx-
plorer tool. However, to allow the users to explore the
3D nature and shape of the bubbles, we have developed
a feature tracking visualization tool that uses 3D vol-
ume rendering techniques to provide interactive visual-
ization of bubbles. This step also satisfies the expert re-
quirement R4 as mentioned before in Section 4.1. This

(a) Interface

(b) Vel. field toggled (c) Sim. field toggled (d) both fields toggled

Figure 9: Visualizing bubble tracking directly in 3D domain using our
feature tracking interface shown in Figure 9(a). The interface shows
the tracked bubble (highlighted in yellow). All the other bubbles are
shown as context and, in the background, the regions that have high
particle rise velocity is also presented (colored in light blue). The
interactive interface allows the users to turn on and off different visu-
alization components. In Figure 9(b) PVF is turned off, in Figure 9(c)
the bubbles are turned off, and Figure 9(d) depicts the visualization of
only the tracked bubble.

tracking interface is shown in Figure 9(a). The interface
integrates VTK [57] and QT for rendering and inter-
action capabilities. The users can interactively change
time steps. In this interface the tracked bubble is high-
lighted in yellow. In the background, all the other bub-
bles are shown with grey color for context. Finally, the
regions where the PVF have high values, i.e, the re-
gions where the particles are moving faster than oth-
ers are shown using volume rendering and are colored
in light blue as seen from Figure 9(a). Different visu-
alization components convey different information and
the combined view provides a holistic understanding for
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the users who can study the temporal bubble evolution
while also visualizing the dynamic nature of the parti-
cle velocities around the bubbles. At any time, the users
can interactively turn on or off the additional bubbles or
the PVF visualization to focus on the tracked bubble. In
Figure 9(b), we show the rendering window when PVF
is turned off, in Figure 9(c) the additional bubbles are
turned off, and finally in Figure 9(d) only the tracked
bubble is shown.

7.3. Scatterplot Matrices for Correlation Study

Besides visualizing the bubbles through the Cinema-
Explorer tool and our 3D tracking interface, the users
are also interested in discovering correlations among
various bubble characteristics, noted as requirement
R3. To achieve this, we provide a scatterplot matrix,
(SPLOM), visualization for the users where all pair
scatterplots are shown simultaneously in a matrix-based
layout (as shown in Figure 11). SPLOM gives a quick
overview visualization where the users can inspect cor-
relations between any two bubble characteristics. Once
they find an interesting pair, they can use the scatterplot
in CinemaExplorer for a detailed study where the users
can interactively highlight points in scatterplot and in-
spect the corresponding bubble characteristics values.
Therefore, by combining CinemaExplorer functionality,
our feature tracking interface, and SPLOMs, we are able
to present in-depth information about the temporal bub-
ble dynamics to the application experts.

8. Results

We validate the above findings on bubble dynamics
through expert feedback and by comparing our results
with findings in the multiphase flow research literature.
We provide details of bubble evolution from the track-
ing results and explore the relationships among various
bubble characteristics. Note that, we have linearized the
time step numbers during analysis. The actual simula-
tion time step numbers can be found by multiplying 100
with the numbers reported here.

8.1. Analysis of Bubble Characteristics

Bubbles in the fluidized bed form consistently at the
bottom of the bed and rise upward before finally reach-
ing the bed surface. Initially, bubbles are generally
small, and gradually grow as they rise, merging with
other bubbles. After studying bubble tracking results for
multiple bubbles, we observed that bubble merge events
are more frequent than bubble splitting and as a result,

the majority of the bubbles grow in size over time be-
fore reaching the top. This observation was intriguing
to the domain expert and the expert was able to rea-
son about such phenomenon. It is also noted that while
studying bubble tracking results using CinemaExplorer,
the scatterplot between bubble volume and time steps
effectively shows this consistent trend for the majority
of the bubbles studied. Figure 10 illustrates how bubble
volume changes over time with sudden changes signi-
fying merge/split events. Also, during the investigation
of these events, by filtering the bubbles using aspect ra-
tio (width/height) values, users can easily locate bubbles
that are spherical in shape (aspect ratio ≈ 1). Such bub-
bles are often of interest to the experts [46]. We further
observe that the bubble rise velocity increases slowly as
the bubble volume increases. Consistent with existing
literature, bubble rise velocity remains relatively con-
stant if bubble volume remains constant [46], whereas
rise velocity increases with increasing volume [46, 58].
Hence, our method helps in the validation process of the
simulation code.

SPLOM-based correlation study. In Figure 11, a
SPLOM is shown for a specific bubble tracked over
time. The SPLOM is plotted as a lower triangular ma-
trix where each cell is a scatterplot between two spe-
cific bubble characteristics. The points in the SPLOM
scatterplots are colored by the Dice similarity index, in-
dicating the bubble matching confidence during track-
ing at each time step. For comparative analysis, we
also provide the PCP from CinemaExplorer and three
representative visualizations of the bubble, one from
an initial time step (T=107), the second from an inter-
mediate time step (T=137), and the third from a later
time step (T=154). By observing the SPLOM, we find
that the bubble volume and rise velocity increases with
time (Cell [1,0], and [3,0] in SPLOM). Furthermore,
the rise velocity and bubble volume (Cell [3,1]) is also
correlated directly. Similar relationships among bubble
volume and rise velocity were documented in previous
studies [46, 58]. This correlation between bubble vol-
ume, rise velocity, and time is also observed in the PCP
in Figure 11 among PCP axes time step, volume, and
rise velocity respectively. Note that the axis x center in-
dicates the position of the bubble in the rising direction
and since the bubble rises gradually over time, x center
is also found to be correlated with volume and rise ve-
locity as seen from both SPLOM and PCP.

8.2. Particle Velocity Dynamics Exploration

The study of particle dynamics around the bubbles
is a challenging and key task for domain scientists as
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Figure 10: (Top) Volume vs time step Scatterplot revealing bubble
merge and split events. The initial feature was selected from time step
= 338 with feature id = 7. (Bottom) Visualization of merge and split
events for this bubble. Detected merge and split events are shown for
a time window indicated by vertical dotted lines in the Scatterplot.

it allows exploration of the hydrodynamics in the flu-
idized bed [46]. Visualization of particle rise velocity
fields (PVF), computed in situ, complement the above
analyses, helping to explain particle dynamics around
the bubbles. Figure 12 shows a PVF for four different
time steps representing different states of the simulation.
The selected colormap shades particles moving upward
(positive velocity) red-to-yellow whereas downward-
moving particles around each bubble are blue. An im-
portant hypothesis in this regard is that particles around
the bubbles tend to move downward as was reported
in [46]. Our domain expert wanted to see if that hy-
pothesis is followed in MFIX-Exa and Figure 12 shows
indeed that is the case. The rationale behind such a
phenomenon is that this happens so that the particles
around the bubble can move down and replenish those
carried upward in the wake of the bubbles. The wake of
a bubble is the region immediately behind it (the red-to-
yellow region in the images). It is also observed that
particle velocities above and below bubbles are high.
The velocity is higher underneath bubbles in the wake
than above bubbles which is seen from the yellow re-
gions at the bottom of bubbles. This distribution of low-
velocity particles around the bubbles and high-velocity
particles on the top and bottom of the bubbles gener-
ates a circular flow causing the bubbles to rise before
breaking through the freeboard. Our analysis method
shows this phenomenon visually and the domain experts
found this extremely useful for validating and verifying
the working principles of MFIX-Exa.

9. Discussion

9.1. Expert Feedback

Results were presented to the domain experts who are
developers of MFIX-Exa and are co-authors of this pa-
per. Overall, the experts were very excited to see the
broad and comprehensive capability that we have de-
veloped. Before this work, most of the analyses were
done offline using visualization tools such as ParaView
and were time-consuming. The experts found the three-
dimensional bubble visualization capabilities very use-
ful, allowing them to investigate the bubble evolution di-
rectly in 3D. The experts were excited to learn about the
novel in situ workflow enabling the detection of bubbles
in situ followed by the interactive, flexible, and real-
time post hoc analysis of bubble dynamics which sat-
isfied their critical need of a flexible analysis workflow,
noted previously as a requirement R1 in Section 4.1.
They agreed that this new analysis capability will accel-
erate their scientific discovery process while analyzing
simulation data and felt that this workflow is a key for
them to be able to interactively explore full-scale three-
dimensional bubble dynamics. The experts were also
comfortable with CinemaExplorer, which consisted of
well-known visualization techniques, and found them
intuitive and useful. They felt that the 3D bubble track-
ing interface worked as a complementary tool to Cine-
maExplorer, allowing them inspection of bubbles in the
3D domain. Through the PCP, they could filter inter-
esting bubbles based on the various salient characteris-
tics. The addition of SPLOM was also found to be ef-
fective for validating relationships between various bub-
ble characteristics. Overall, the experts were very pos-
itive about our approach and thought that our work has
made significant contributions in the analysis of three-
dimensional bubble dynamics for multiphase flow sim-
ulations.

9.2. Parameter Selection

The cluster size for SLIC is an important parame-
ter. Generally, a smaller cluster size improves accuracy
since smaller clusters will detect smaller bubble regions
more accurately; if the cluster size is too large, some
small bubbles could be missed. Figure 13 shows the
impact of two different cluster sizes. It can be seen that
with a large cluster size, some small bubbles are frag-
mented (highlighted in red). Hence, to capture small
bubbles accurately, we have used 3x3x3 cluster sizes
in all our experiments. Finally, for segmenting bubbles
from the BSFs, we have used a consistent statistical sim-
ilarity threshold of 0.92, which resulted in consistent
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Figure 11: Visualization of SPLOM generated for studying relationships among various salient bubble characteristics for a bubble tracked over
time. The bubble was selected from time step = 154 with feature id = 16. The PCP from the CinemaExplorer is also shown. At the bottom right,
visualizations of the selected bubble from three different time steps are provided. It can be seen that the bubble increases in size over time as it
evolves through the fluidized bed.

T=130 T=175 T=325 T=370

Particle Rise Velocity

-0.4 0.4 -0.4 0.4 -0.4 0.4 -0.4 0.4

Figure 12: Visualization of particle rise velocity fields (PVF) for dif-
ferent time steps. The blue regions indicate particles with negative
velocity (downward movement) and the red to yellow regions show
particles with positive rise velocity(upward movement). The PVFs
are computed in situ from the raw particle velocity fields and can be
used to effectively study the dynamics of particles around bubbles.

bubble extraction for all the time steps for all simula-
tion use cases. By visually comparing the segmented
bubbles with the raw particle fields, it was found that
the extracted bubbles accurately represented the void re-
gions. We also found that changing the similarity value
slightly does not significantly change the shape of the
bubbles and so the segmentation is robust.

In this context, one might just use simple threshold-
ing to extract bubbles directly from the particle density
field. However, finding a robust and consistent thresh-
old that will work for different simulation cases is non-

Cluster size: 3x3x3 Cluster size: 11x11x11

Figure 13: Impact of different cluster sizes on bubble detection. For
larger cluster sizes, small bubbles might be detected inaccurately.

trivial since there is no guideline for picking a density
threshold. Also, for different simulation use cases, the
dynamic range of density fields will be different and so
the same threshold will not work across simulations. In
Figure 14, we show that when we use a density thresh-
old = 12 for extracting bubbles, while it works reason-
ably well in one use case (Figure 14e), the same thresh-
old does not work for the other use case (Figure 14b).
In contrast, our statistical method uses the same feature
similarity threshold for extracting bubbles for both of
the use cases and can extract bubbles correctly as shown
in (Figure 14c and Figure 14f).

9.3. Comparative Discussion with Similar Works
Bubble feature analysis and tracking in a two-phase

simulation data were also explored by Fang et al. [59].
In this work, as the simulation was able to generate
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Figure 14: Comparing density threshold-based bubble extraction with
the proposed method. The top row ((a), (b), and (c)) and the bottom
row ((d), (e), and (f)) show two different simulation use cases. Finding
a robust and fixed density threshold to segment bubbles is not possible
since different simulations will have varying density value ranges and
the same density threshold will not work. We see that the density
threshold=12 works well for one case, (e), but the same threshold
fails in the second case, (b). In contrast, the proposed method is able
to use the same feature similarity to extract bubbles as shown in (c)
and (f).

a level crossing scalar field data that indicated separa-
tion between two states, the researchers used a level set-
based method to extract bubbles from the data and then
tracked them over time. The boundary of the bubble
was isolated by the level set of zero values in the field.
In our case, since we do not have this kind of level cross-
ing field and rely on the unstructured particle data, we
are not able to use a level set-based method. Instead,
we use a statistical distribution-based method to reli-
ably extract bubbles from the particle field. In another
recent post-processing pipeline, an analysis of bubbles
was proposed by Buchheit et al. [47]. It used mesh-
based data generated from MFiX simulation, the prede-
cessor of MFIX-Exa simulation. Bubbles were identi-
fied by a constant threshold in the volume fraction field
and their contours (level set) were visualized and ana-
lyzed. Although this technique shows promise, using a
fixed threshold to segment bubbles could lead to missing
smaller bubbles. Furthermore, while tracking, the inter-
section between corresponding bubbles was tested by
intersecting the bounding boxes which also could result
in incorrect correspondence for convex bubbles [47].
We remedy these shortcomings and sample the data fre-
quently in situ to ensure that overlap-based reliable bub-
ble tracking can be applied. The overlap test is done on
the 3D bubble features and hence the correct overlap
is detected. We employ a statistical feature detection
technique that generates a bubble similarity field which

T = 12050 T = 12500 T = 12900

Figure 15: Visualization of bubble tracking results from the large-
scale in situ MFIX-Exa use case. The feature similarity fields and
particle velocity fields shown in the top row are generated in situ.

can be visualized with varying similarity values to il-
lustrate uncertainties associated with bubble detection.
Hence, in our case, we are not using a level set to extract
bubbles. We also provide customized visualization tools
that effectively show the results of bubble dynamics in-
teractively, enabling the user to query bubble properties
and study tracking results.

10. In Situ Case Study

Until now, we have provided a detailed study of our
proposed algorithm and showed its efficacy in exploring
bubble dynamics. In this section, we discuss the details
of an in situ case study and its computational perfor-
mance to demonstrate the practicality and in situ via-
bility of our technique. The MFIX-Exa simulation data
that we have used above for demonstration purposes,
contains ≈3 million particles per time step. We have
used this data set for developing, benchmarking, and
validating our proposed technique by working closely
with the MFIX-Exa developers. For the in situ perfor-
mance study, we have used a larger MFIX-Exa use case.
This new use case simulates 54.51 million particles in
a fluidization bed. In this controlled study, we simu-
late 1000 time steps for measuring in situ performance
and storage benefits of our proposed technique. In Fig-
ure 15, we show results from this large-scale simulation
where the top row shows 3D visualization of tracking of
a specific bubble from three representative time steps,
and at the bottom, we show the CinemaExplorer-based
visualization for this bubble. The BSF and the PVFs
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shown in the top row are generated in situ and our track-
ing interface is used to generate these visualizations.

10.1. In Situ Code Integration

The MFIX-Exa [60] and AMReX [44] codes are de-
veloped in C++. To perform in situ data analysis, cus-
tom code was added to both MFIX-Exa and AMReX
code bases. The in situ code is developed in C/C++

and uses VTK data models [57]. The final summa-
rized bubble similarity fields and the particle rise veloc-
ity fields are stored in VTK image data format, and so,
can be readily loaded into standard visualization tools
such as ParaView [45] or VisIt [12]. A direct data access
scheme is used to read the raw particle data from mem-
ory by querying the particle container data structures of
AMReX. Since the simulation and the in situ data pro-
cessing routines use the same memory and computing
resources, the proposed in situ integration works in syn-
chronous mode, tightly coupled with the simulation. As
we output the in situ summarized feature-specific data
in the form of 3D scalar fields that can be analyzed and
visualized to produce new results, the output type of our
in situ processing is explorable.

10.2. In Situ Performance Evaluation

We deployed our algorithm in situ by running it with
MFIX-Exa simulation using a moderately sized test
case. The primary purpose of this performance evalu-
ation is to measure how much extra time our algorithm
takes compared to the actual simulation and how much
storage reduction our method can achieve. Another pur-
pose is to estimate how much I/O cost and post hoc anal-
ysis time we can save by performing part of the analyses
in situ. This in situ performance evaluation was done the
Summit supercomputer [61], an IBM system located at
the Oak Ridge Leadership Computing Facility. Below
we show the results we obtained from the performance
evaluation in terms of space and time savings.

Storage savings. A single time step of this MFIX-
Exa test case outputs 3.1 GB of raw data for three quan-
tities: particle id, location, and velocity. Note that the
simulation typically stores many other fluid variables
per particle, such as drag, mass, omoi, density, phase,
volume, etc., which will increase the storage per time
step further. However, since we are only using particle
location and velocity variables, we only store these vari-
ables so that we get a fair storage comparison. We sim-
ulated 1000 time steps, producing over 3 TBs of data.
Due to the high data volume, experts often only store
every 100th time step so the resultant data size remains
tractable. Note that, for the purpose of our study, we

only simulated 1000 time steps, however, for the real
analysis case, typically tens of thousands of time steps
are needed to run and the storage requirement will in-
creases proportionately. Processing data in situ allows
us to access higher temporal fidelity so that more time-
accurate information about the bubbles can be captured.
In our experiment, we accessed simulation data every
10th time step for 1000 total time steps, resulting in
storage of 100 time steps. Storing raw data for these
100 time steps requires 310 GB storage space. Instead,
by performing in situ analysis, for every 10th time step,
we computed bubble similarity and particle rise veloc-
ity fields and stored those fields to disk. The disk space
required for storing the in situ generated data is only
224 MB in VTK format which is significantly smaller
compared to the raw particle data storage. Hence, we
find that in situ analysis workflow is beneficial and re-
sults in a significant data triage while paving a path for
flexible and detailed post hoc study of bubble dynamics.

Computational time savings. Since the simulation
starts from a random particle initialization and gradually
reaches a state where bubbles are periodically formed,
we started MFIX-Exa simulation from a later time point
(time step = 12000) to produce bubbles and simulated
1000 time steps for our study. In Table 1, we provide
the computational and I/O timings taken by the differ-
ent steps of the algorithm and the study was run using
2048 MPI processes. The first three columns of Table 1
show computation times of density and PVF field esti-
mation, SLIC generation, and computation of similarity
fields separately. We find that the total in situ processing
time is significantly smaller compared to the actual sim-
ulation time and the in situ processing takes only around
3% additional computation time. Hence, our in situ al-
gorithm does not overburden the simulation. The last
two columns show the I/O timings of in situ processing
and the time if the raw particle data was stored. We ob-
serve that the reduced in situ outputs take significantly
less time to be stored into disks compared to the time
taken by raw particle field storage. Hence, in situ pro-
cessing also minimizes the disk I/O time.

In Table 2, we show the time it would take if our algo-
rithm was run offline using stored raw particle data on
a standard desktop computer. We see that the off-line
processing of such a large time-varying data set takes
much longer time compared to the time taken in situ
(Table 1). The density and velocity field computation
time takes the largest fraction of computation time since
this computation needs the raw particle data. The com-
putation of SLIC and similarity field uses the derived
particle density field which is smaller than the raw data
and hence the computation faster. We can use parallel
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Table 1: In situ processing and I/O times (in seconds) taken by the proposed method compared to the simulation time.
Density and
velocity field SLIC

Similarity
field

Total in situ
computation

Total simulation
time

In situ
I/O

Simulation
I/O

2048 MPI
processes 2.58 124.37 1.44 128.39 4408.6 14.60 504.85

Table 2: Post hoc timings (in seconds) for different steps of our pro-
posed algorithm. By processing data in situ, timings shown in this
table can be saved.

Density and
velocity field SLIC

Similarity
field Total I/O

39420.87 59.27 144.57 3364.43

processing to improve upon these computation timings,
however, the I/O time (third column of Table 2) will still
be high for post hoc analyses, and as the number of time
steps to process will increase, these post hoc computa-
tion timings will become significantly high. In contrast,
by processing data in situ, we can completely bypass
timings reported in Table 2 and the domain experts can
start their analysis right after the simulation ends and
the exploration will be accelerated.

11. Conclusions

In this work, we have presented an end-to-end in
situ analysis guided visual exploration of complex bub-
ble dynamics phenomena in fluidized bed simulations.
We have successfully demonstrated an in situ analy-
sis pipeline with MFIX-Exa to extract bubble-specific
data in situ, enabling flexible and scalable post hoc ex-
ploration of bubble dynamics. We have conducted a
detailed performance study and validated our findings
through domain expert feedback and qualitative com-
parison with existing literature in the multiphase flow
analysis. In the future, we plan to apply our technique to
ensemble MFIX-Exa simulations so that the role of in-
put parameters in the bubble dynamics can be explored
efficiently. We also want to explore other particle den-
sity estimation techniques provided in [51] for comput-
ing particle density fields. Finally, GPU implementa-
tions of our in situ algorithm are underway to further
improve in situ performance of future extreme-scale
MFIX-Exa runs with hundreds of millions of particles
at upcoming exascale supercomputers [40].
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scalar data using hixels, in: Large Data Analysis and Visual-
ization (LDAV), 2011 IEEE Symposium on, 2011, pp. 23–30.
doi:10.1109/LDAV.2011.6092313.

[30] T.-H. Wei, C.-M. Chen, A. Biswas, Efficient local histogram
searching via bitmap indexing, Computer Graphics Forum
34 (3) (2015) 81–90. doi:10.1111/cgf.12620.

[31] Y. Wang, W. Chen, J. Zhang, T. Dong, G. Shan, X. Chi, Ef-
ficient volume exploration using the gaussian mixture model,
IEEE Trans. on Vis. and Comp. Graphics 17 (11) (2011) 1560–
1573.

[32] S. Liu, J. Levine, P. Bremer, V. Pascucci, Gaussian mixture
model based volume visualization, in: 2012 IEEE Symposium
on Large Data Analysis and Visualization (LDAV), 2012, pp.
73–77. doi:10.1109/LDAV.2012.6378978.

[33] D. Silver, X. Wang, Tracking scalar features in unstructured data
sets, Proceedings Visualization ’98 (Cat. No.98CB36276) 98
(1998). doi:10.1109/VISUAL.1998.745288.

[34] R. Samtaney, D. Silver, N. Zabusky, J. Cao, Visualizing fea-
tures and tracking their evolution, Computer 27 (1994) 20–27.
doi:10.1109/2.299407.

[35] G. Ji, H.-W. Shen, Feature tracking using earth mover’s distance
and global optimization,” pacific graphics 2006.

[36] S. Ozer, J. Wei, D. Silver, K.-L. Ma, P. Martin, Group dynamics
in scientific visualization, in: Large Data Analysis and Visual-
ization (LDAV), 2012 IEEE Symposium on, 2012, pp. 97–104.
doi:10.1109/LDAV.2012.6378982.

[37] H. Saikia, T. Weinkauf, Global feature tracking and similarity
estimation in time-dependent scalar fields, Computer Graphics
Forum 36 (3) (2017) 1–11. doi:10.1111/cgf.13163.

[38] F. Sauer, H. Yu, K.-L. Ma, Trajectory-based flow feature track-
ing in joint particle/volume datasets, IEEE Transactions on Vi-
sualization and Computer Graphics 99 (PrePrints) (2014) 1.
doi:10.1109/TVCG.2014.2346423.

[39] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, H. Doleisch,
The state of the art in flow visualisation: Feature extraction and
tracking, Comput. Graph. Forum 22 (4) (2003) 775–792.

[40] Optimizing a new technology to reduce power plant carbon
dioxide emissions, https://www.exascaleproject.org/optimizing-
a-new-technology-to-reduce-power-plant-carbon-dioxide-
emissions/ (2022 (accessed March 23, 2022)).
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