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Abstract—Modern scientific simulations produce very large datasets, making interactive
exploration of such data computationally prohibitive. An increasingly common data reduction
technique is to store visualizations and other data extracts in a database. The Cinema project is
one such approach, storing visualizations in an image database for post hoc exploration and
interactive image-based analysis. This work focuses on developing efficient algorithms that can
quantify various types of multivariate dependencies existing within multi-variable datasets. It
applies specific mutual information measures for the quantification of salient regions from
multivariate image data. Using such information measures, the opacity of the images is
modulated so that the salient regions are automatically highlighted and the domain scientists
can interactively explore the most relevant regions for scientific discovery.

IMAGE-BASED data reduction techniques have
emerged as one of the viable solutions to mini-
mize the size of the stored data so that it can

be analyzed and visualized interactively post hoc
by the application scientists [1]. Storing large-
scale three-dimensional multivariate simulation
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Figure 1. An illustrative diagram of our workflow. Here we have chosen the variables pressure and velocity
from the Hurricane Isabel dataset to demonstrate the steps in our technique. Specific mutual information (SMI)
measures: Surprise and Predictability are applied on the variable pairs and corresponding images are shown
in column (a). After modulating the opacity using linear and nonlinear mapping functions, images with salient
regions are analyzed as shown in columns (b) and (c) respectively.

datasets in the form of an indexed image database,
called a Cinema Database1 [2], facilitates explo-
ration of the large-scale scientific data efficiently
without overwhelming the users. These Cinema
databases are ideally generated in situ, i.e., when
the simulation is running on the supercomputer
and the data is not yet moved to the disks. Instead
of keeping the raw data, Cinema databases are
stored onto disk as a proxy for the data, capturing
various types of visualizations of the data. Later
during offline analysis, the Cinema databases can
be explored interactively to analyze the data in
the image space. The success of this approach has
been shown in many application domains [2], [3].

Even though Cinema databases result in a sig-
nificant amount of data reduction, such databases
still consist of multiple variables, timesteps, visu-
alization parameters, etc. Hence, efficient image-
based data analysis and visualization algorithms
are necessary to find salient data features au-
tomatically so that the domain experts do not
have to manually explore them. This problem
becomes more challenging when the experts want

1https://cinemascience.github.io

to analyze features in the multivariate spatiotem-
poral domain to study their interaction pattern.
In many scientific applications, variables collec-
tively show association/dissociation relationships
and such properties are often correlated to a
physical phenomenon in the data. For example, in
hurricane simulation data, low-pressure and low-
velocity regions are characterized as the hurricane
eye, indicating the strength of the storm. There-
fore, multivariate analysis techniques are essen-
tial to efficiently detect association/dissociation
relationships in image databases. Ideally, these
relationships should be visually incorporated to
the image database to support further interactive
exploration for new scientific discovery.

In this work, we propose an information-
theoretic analysis framework that works on mul-
tivariate time-varying Cinema databases and per-
forms automatic identification of salient regions
given a pair of variables. The technique uses
specific mutual information measures (SMI) that
are a decomposition of traditional mutual infor-
mation so that the information content of specific
data values can be quantified. Each SMI measure
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captures a unique multivariate property of the
data. Using the strength of these SMI measures,
the opacity of the images is modulated during vi-
sual analysis so that the important spatial regions
are highlighted automatically and the users can
quickly focus on them while exploring the Cin-
ema databases. The analysis results are presented
interactively using a web-based visual-analytics
tool, CinemaView2, which allows side-by-side
interactive comparison of analysis results. The ef-
ficacy of the proposed framework is demonstrated
by applying it to scientific simulation datasets
from weather and combustion sciences.

The contributions of our work are twofold:

• We propose a new technique to perform au-
tomatic feature analysis in multivariate time-
varying scientific data. Our image-based repre-
sentations of the 3D spatiotemporal data helps
reducing the overhead of the analysis signifi-
cantly.

• We propose an information-theoretic opacity
mapping technique to highlight the statistically
salient regions in the data considering pairs of
variables.

RELATED WORKS
In this section, we present a comparative dis-

cussion of the existing related works and indicate
how our work is different. Information theory [4]
have been used successfully for solving problems
across many computational domains[5], [6]. In-
stead of using traditional mutual information, the
use of various decomposition of mutual informa-
tion, called specific mutual information (SMI),
have gained significant attraction in recent years.
By applying SMI, Bramon et al. showed that
multi-modal 3D medical datasets can be fused
into a single dataset [7]. In another work, Bramon
et al. used mutual information to design color
transfer function for medical data [8]. To analyze
uncertainty of isosurfaces in scientific 3D data,
Biswas et al. [9] used SMI and Dutta et al. ex-
tended this work into time-varying domain [10].
In contrast to the above works, in this work,
we have focused on 2D image-based databases,
generated from multivariate time-varying simula-
tions, where our primary focus is to use SMI to

2https://github.com/cinemascience/cinema view

automatically first detect the statistically salient
regions considering images from variable pairs
and then use the SMI values at each pixel location
to define opacity values so that the salient regions
are automatically highlighted. These images will
be ideally generated during the simulation run,
i.e., in situ, and as these simulations can have
many variables and hundreds to thousands of
time steps, we believe that our approach can
significantly accelerate the multivariate analysis
for the domain scientists by providing them an
image-based time-varying summary of simulation
variable interactions where the salient regions are
automatically highlighted.

OVERVIEW
Our aim is to develop an interactive analysis

technique to enable scientists to explore salient
regions in time-varying multivariate datasets. The
images in the Cinema database are derived from
three dimensional simulation data for each vari-
able over multiple timesteps. To study the rela-
tionship among multiple variables, we use specific
mutual information (SMI) to provide information
about a target variable based on the knowledge
of a specific scalar value of another reference
variable. We employ two SMI measures to ex-
plore multivariate interaction between variable
pairs and use the SMI values to design opacity
mapping for the images to highlight statistically
salient regions automatically. A workflow of the
proposed framework is presented in Figure 1.

INFORMATION-DRIVEN
FRAMEWORK FOR MULTIVARIATE
FEATURE EXPLORATION
Cinema Database and Image Format

To generate the Cinema database images, 2D
slice rendering is applied to the 3D scalar valued
variables. Instead of applying a transfer function
via a colormap and storing the RGB valued
images, we use perspective projection on the 2D
slice of the 3D data so that each pixel stores
the corresponding value of scalar data [3]. Such
images are called float images and are stored
using standard PNG format. This also allows us
to compute the SMI measures directly using the
raw data values rather than data distorted by an
underlying colormap. A colormap can then be ap-
plied post hoc. In Figure 2, we show examples of
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Figure 2. Visualization of float and colored images. 2(a) presents float image and the corresponding colored
image using the colorbar shown on right for the pressure variable from the Hurricane Isabel dataset. 2(b)
presents an example of the mixture fraction variable from the Turbulent combustion dataset.

the float images and corresponding color mapped
images that are used in this work.

Specific Mutual Information Measures
The key factor in this work is determining

the degree of association among the different
variables in order to identify and highlight salient
regions. Because scientific data often has nonlin-
ear dependencies between variables, any corre-
lation analysis technique must handle nonlinear
cases. There are several correlation analysis tech-
niques available for measuring variable relation-
ship. Mutual Information (MI) is one of the well-
known measures to quantify the mutual correla-
tion between two variables. MI’s ability to capture
nonlinear dependency between variables makes
it a better choice than a more typical approach
such as Pearson’s correlation. Mutual information
quantifies the total amount of information overlap
between two variables, i.e., if we observe a certain
variable, then MI tells us how much uncertainty
has been reduced regarding the information of
another variable. Given two random variables X
and Y , MI I(X ,Y ) is formally defined as:

I(X ,Y ) = ∑
y∈Y

∑
x∈X

p(x,y) log
p(x,y)

p(x)p(y)
(1)

where p(x) and p(y) are the probabilities of oc-
currence of values x for X and y for Y respectively
and p(x,y) is the joint probability of occurrence
of values x and y together.

MI quantifies the total association or disas-
sociation between two variables and provides a
single value. Since we aim to extract salient
regions, we need a measure that can provide

us with information related to individual scalar
values. Traditional MI can be further decomposed
into specific mutual information (SMI) measures
to quantify individual data values’ contribution
towards such association or disassociation. For
specific scalar values x ∈ X , SMI computes the
information content of x when another variable
Y is observed. In this case, X is called the
reference variable and Y is called the target
variable. Knowledge about the scalar values in the
reference variable can increase knowledge about
the target variable. This increase in information
or decrease in uncertainty helps in identifying
important regions in the float-image data. MI
can be decomposed in multiple ways to obtain
several SMI measures and we focus on two such
SMI measures, Surprise and Predictability, [7],
[11] for finding different types of multivariate
characteristics between variable pairs.

SMI measure Surprise: I1(x;Y )

The Surprise measure quantifies the change
in the information content in the occurrences
of the target variable after observing individual
scalar values of the reference variable. This mea-
sure has the potential of providing information
which would seem improbable otherwise, hence
the name surprise [7], [11]. The regions where
data values have higher surprise values can be
informative. For two random variables X and Y ,
surprise is denoted as I1 and presented as:

I1(x;Y ) = ∑
y∈Y

p(y|x) log
p(y|x)
p(y)

(2)
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Figure 3. Function plots of the opacity mapping for modulating transparency in the images. Upper row
3(a), presents plots from SMI measure surprise (I1) and lower row 3(b), presents plots from SMI measure
predictability (I2). Column (i) represents linear mapping and columns (ii), (iii) and (iv) represent increasing order
of nonlinear mapping. x-axis of the plots shows the values from the SMI measure and y-axis shows the mapped
values from the corresponding functions.

where x ∈ X is the reference variable and y ∈ Y
is the target variable. p(y) is the probabilities of
occurrence of values y for Y and p(y|x) is the
conditional probabilities of values y given values
x. Surprise is always positive as it is the distance
between p(y|x) and p(y). A high I1(x;Y ) implies
that after observing the reference variable x, some
low probability values of y∈Y have become more
probable. This surprising element is potentially
informative for our analysis.

SMI measure Predictability: I2(x;Y )
The Predictability measure provides us with

the amount of increase/decrease in uncertainty
about the target variable after observing the refer-
ence variable [7], [11]. This quantification of the
uncertainty change helps to identify statistically
significant regions in the images. Predictability is
denoted as I2 and can be computed as:

I2(x;Y )=− ∑
y∈Y

p(y) log p(y)+∑
y∈Y

p(y|x) log p(y|x)

(3)
where x ∈ X is the reference variable and y ∈ Y
is the target variable. p(y) is the probabilities of
occurrence of values y for Y and p(y|x) is the

conditional probabilities values y given values x.
Based on the amount of information increase and
decrease, I2 can be both positive and negative. A
high positive I2(x;Y ) value indicates that the un-
certainty of target variable Y has decreased when
value x is observed. On the other hand, a high
negative I2(x;Y ) value indicates that the uncer-
tainty of target variable Y has actually increased.
According to information theory, data values that
are less probable or unpredictable contain more
information representing salient regions in the
data with diverse characteristics that are worth
deeper exploration. Therefore, the surprise and
predictability measures provide different statisti-
cally meaningful results, an important considera-
tion in the workflow.

SMI-driven Opacity Mapping Functions
These two SMI measures can now be applied

to the image data to identify and highlight sta-
tistically salient regions. Since each pixel in the
data has a scalar value, SMI measures can be
estimated at every spatial pixel location. Note that
high surprise regions and high / low predictable
regions indicate salient variable relationships. We
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want to emphasize such regions where statisti-
cally significant multivariate properties exist be-
tween the selected variable pair. One of the ways
to highlight the regions is by modulating the
opacity channel of the image. This suppresses
unimportant pixel values while directing focus to
important regions. In the following, we show how
different types of opacity mapping functions for
SMI values can be used to automatically highlight
important regions in the images. The design goal
of such opacity functions is to make the regions
containing high SMI values more opaque so that
they are clearly visible and suppress regions with
low SMI values by making them transparent.
The choice of opacity mapping functions is quite
broad and we consider linear and nonlinear map-
ping functions.

Linear Mapping Strategy of SMI Values
A linear mapping function can be trivially

designed. We normalize the values of I1 and I2
in the range of [0,1] using the following linear
function.

f (x) =Constant (4)

As shown in Figure 3, for the surprise measure,
I1, 3a(i) shows a linear relationship representing
the I1 values between [0,1] for a pair of variables.
Since predictability, I2, produces both positive
and negative values, we model them separately.
We normalize positive values between [0,1] and
negative values between [−1,0]. Combining both
at 0, we get a ’V -shaped’ plot, as shown in Fig-
ure 3b(i). By designing linear mapping functions
such as these, lower SMI valued or unimportant
regions will be transparent and higher SMI valued
or informative regions will become opaque.

Nonlinear Mapping Strategy of SMI Values
The linear mapping strategy computes opac-

ity value as a linear function of SMI values.
However, this may not provide sufficient differ-
entiation in the opacity to highlight the most
salient regions. In order to design a mapping
strategy where the higher SMI valued regions
are clearly visible by further suppressing the low
valued regions, we introduce nonlinear mapping
functions, where the transparency value mapping
can be modulated exponentially, giving us more
control during analysis. We define the following

nonlinear exponential function:

f (x) = e1− 1
xa ;a >= 1 (5)

where a is the exponential control parameter.
As a increases, higher SMI values are assigned
higher exponential weight. a provide a control
parameter that a user can use to set a thresh-
old on the measures that are improtant for a
specific analysis. Figure 3, columns(ii), (iii) and
(iv), illustrates how the function changes with
increased values of a from 1 to 3. In the case
of I1, as a increases, the plot gets steeper by
assigning less weight to lower values and more
weight to higher values. For example, in the
case of Figure 3a(iv), the regions with highest
I1 values will be most opaque making anything
below threshold transparent, thus highlighting the
significant regions in the images.

This approach is extended for the I2 analy-
sis by using the function separately for positive
and negative values. As seen in Figures 3b(ii),
b(iii) and b(iv), with higher orders of a, the V -
shape from the linear mapping becomes more ’U-
shaped’ with steepening curves emphasizing the
most significant positive and negative I2 values.

With the parameter a, the user can set the
opacity threshold for results useful to their spe-
cific analysis and achieve control over the images
they want to visualize for further exploration.

RESULTS
The results of our work are presented using

an interactive visual analytics tool, CinemaView,
to study salient regions in image datasets. Cin-
emaView is a browser-based viewer that allows
interactive exploration of image databases stored
as a Cinema database. Figures 4 and 5 show
the user interface of the CinemaView tool. Fig-
ure 4(a) shows the color mapped ground truth
images of two selected variables, pressure and
cloud, followed by the images representing the
analysis of the variables using surprise (I1) and
predictability (I2) as opacity mapping functions.
Images containing both linear and nonlinear map-
ping can be visualized simultaneously using this
tool as shown in Figure 4(a). In this study, we
present results by using order up to 3 for the non-
linear opacity mapping functions. The right panel
of the CinemaView interface provides interactive
widgets that can be used to adjust image size and

6 CiSE



to explore the results over time. There is a drop-
down menu where the user can select the dataset
to view. CinemaView is intuitive and user-friendly
and it allows interactive exploration of multiple
image databases simultaneously in a side-by-side
fashion. Users can easily compare and contrast
the relationships among multiple variables and
study their evolution over time (supplementary
video).

Hurricane Isabel Dataset
Hurricane Isabel data was produced by the

Weather Research and Forecast (WRF) model,
courtesy of NCAR and the U.S. National Science
Foundation (NSF). This dataset consists of 13
variables and 48 timesteps with a spatial reso-
lution of 250 × 250 × 50 for a single timestep.
In this work, we show analysis results obtained
using the pressure and cloud variables.

Figure 4(a) presents analysis results for
timestep 7. The pressure is the reference vari-
able and cloud is the target variable. Thus the
specific mutual information measures are calcu-
lated for values of pressure. After computing I1
measures, the results are stored as images for
visual analysis. Since each pixel in the raw data
has a pressure value and each pressure value
has an associated surprise (I1) value, we create
a new image where each pixel contains the I1
value and the opacity at each location is also
controlled by a linear/nonlinear mapping function
using the associated surprise values. This is then
repeated for each timestep. The corresponding
opacity mapping functions used to modulate the
opacity for timestep 7 are shown in Figure 4(b),
where the goal is to highlight regions that have
high surprise value. As shown in Figure 4(b), we
modulate the order of the opacity function so that
we can emphasize regions with high magnitude
of I1 values.

In Figure 4(a), the high I1 valued regions are
presented with different shades of blue where the
different shades indicate the opacity modulated
regions with darker blue depicting higher surprise
values. From the I1 linear mapping results, we can
observe that the areas around the hurricane eye
are highlighted as having high I1 values and indi-
cate that such regions have become more probable
after the cloud variable is observed. These regions
coincide with the hurricane eyewall – a salient

region in the pressure data. It is also observed
that, by increasing the ordering of the nonlinear
mapping, we can refine the most significant and
surprising regions around the hurricane eyewall.

The second row of Figure 4(a) (except the
first image) presents I2 analysis results. As the
I2 values can be both positive and negative, for
visualization purposes, those regions are high-
lighted using shades of blue and red. Blue and
red indicate negative and positive I2 values, re-
spectively. From the I2 analysis results, we see
that the hurricane eye region is red (positive I2)
which means it is a highly predictable region
when pressure and cloud variables are analyzed.
It is known that in the hurricane eye region,
pressure values are typically low and cloud values
are mostly homogeneous and thus such region is
detected as a predictable region. If we focus at
the region around the hurricane eye’s boundary,
we find that a region is identified as uncertain
and has negative predictability values and so has
blue color. This is also a consistent observation
since this region is known as the eyewall and the
target/observed variable cloud has high variability
and so is less predictable. Finally, moving away
from the hurricane eyewall, the cloud values again
become less varying and such regions are detected
as more predictable regions (red color) away from
the hurricane eye. The white regions in these
images indicate regions where both the positive
and negative I2 values are relatively low and
so they are transparent. From the predictability
plots in Figure 4 b(i), b(ii), b(iii) and b(iv), the
white areas represent the parts where the ‘V-
shape’ flattens into ‘U-shape’ as we increase the
order of the nonlinear mapping. As the order
is increased, stronger predictable and uncertain
regions become highlighted as significant regions.

Turbulent Combustion Dataset
The Turbulent combustion simulation data

is made available by Dr. Jacqueline Chen at
Sandia Laboratories through the US Department
of Energy’s SciDAC Institute for Ultrascale Vi-
sualization. This dataset has 5 scalar variables
and 122 timesteps with a spatial resolution of
240 × 360 × 60 for a single timestep. During
combustion process, fuel and oxidizer react and
the flame exists where fuel and oxidizer are
in stoichiometric proportions [12]. The mixture
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Figure 4. (a) presents salient regions between pressure and cloud variable analysis from the Hurricane Isabel
dataset at timestep 7 using CinemaView. The first images of each row are the color mapped images of the
reference variable pressure and target variable cloud. The first row shows the combined analysis using surprise
(I1) as the opacity mapping function. The blue regions represent detected salient areas. The second row shows
combined analysis using predictability (I2) for the opacity mapping function. The red regions represent positive
predictability and the blue regions represent negative predictability. The elements annotated with red arrows
and circles show the interactive tools of CinemaView. (b) presents function plots of the opacity mapping for
modulating transparency in the corresponding images. Upper row shows surprise (I1) plots and lower row
shows predictability (I2) plots. Column (i) represents linear mapping and columns (ii), (iii) and (iv) represent
increasing order of nonlinear mapping. x-axis of the plots shows the values from the SMI measure and y-axis
shows the mapped values from the corresponding functions.

fraction is an important variable in this dataset
that indicates the fraction of mass at fuel stream
origin. So, we have used the mixture fraction
(mixfrac) as the reference variable and hydroxyl
radical (Y OH) as the target variable since both
of these can be used to study the flame regions of
the simulation [12]. By analyzing the interacting
relationship of these two variables, important

features can be studied and detailed information
about the combustion process can be gleaned.

In Figure 5, we show results from timesteps
5, 41, and 80 as three different representative
timesteps, highlighting three stages of the time-
varying simulation. Timestep 5 in Figure 5(a)
shows the initial state of the combustion variables
interacting when the flames just started burning.
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(a) Timestep 5

(c) Timestep 80

(b) Timestep 41

Positive I2 Negative I2

Figure 5. Salient regions between reference mixfrac and target Y OH variable analysis from Turbulent
combustion dataset at (a) timestep 5, (b) timestep 41 and (c) timestep 80. The first images of each row are
the color mapped images of the reference variable mixfrac and target variable Y OH. After the color mapped
image, the top row from every timestep shows combined analysis of the variables using surprise (I1). The blue
regions represent the salient areas (flames). Similarly, the bottom row shows analysis using predictability (I2).
Red and blue regions represent positive and negative predictability respectively.
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Timestep 41 in Figure 5(b) represents an interme-
diate time when the combustion process is active
and and finally, Figure 5(c) presents the result
from a later timestep 80 when the flame has
expanded. From these three figures, the salient
regions clearly change their shape and position
over time, indicating how this method is able to
capture temporal changes.

The salient regions detected from the I1 anal-
ysis signifies the areas where the combustion pro-
cess is happening around the flames. I1 analysis
shows blue regions identifying the areas with
combustion flames. As we proceed to nonlinear
mapping with increased order, higher I1 valued
regions get highlighted with dark blue and lower
I1 valued regions become transparent with lighter
shades of blue, displaying the flame regions in a
more refined manner.

From the I2 analysis results, we see two
types of regions, blue and red. As before, the
blue regions show the locations where the val-
ues of the target/observed variable (Y OH) are
not homogeneous when observing the reference
variable mixfrac. From all of the three timesteps,
we find that the blue regions coincide well with
the regions detected by the I1 analysis, i.e.,
the regions where the flame is. In this region,
the complex chemical reactions take place and
so is hard to predict. From our I2 analysis,
such regions are detected as having negative I2
values which means such regions have higher
uncertainty, therefore, less predictable. On the
other hand, the red regions in these results show
predictable regions of Y OH when mixfrac is
observed. The two outer red regions (the top
and the bottom part) are the background regions
where the combustion is not happening and hence
the data values are mostly homogeneous. As a
result, such regions are correctly identified as
the highly predictable regions. The red regions
in between two blue uncertain regions indicate
that at the center of the simulation, there are
some places where the variable Y OH is more
predictable and hence has positive I2 values. It
is also observed that as we increase the order
of our opacity mapping function for both linear
and nonlinear approaches, we can obtain further
refined views of these predictable and uncertain
regions where the darker (more opaque) regions
indicate locations with higher magnitude of I2

values. From these analysis results, we observe
that both I1 and I2 analysis on the Turbulent com-
bustion dataset bring out salient regions that the
user can further study in more detail for exploring
important characteristics of these variables over
space and time.

Conclusions and Future Work
Our work successfully enables scientists to

explore and extract salient regions in time-varying
multivariate data sets. This technique is general-
izable and is not limited to the data sets analyzed
in this work. In future work, we plan to accelerate
the computation of the information measures by
using GPU-based parallel computing. The com-
putation for each timestep can be further paral-
lelized since the computation at each timestep
is independent. We also plan to design more
sophisticated optimization functions for opacity
mapping. Instead of generating different orders
for opacity modulation, an optimization-based
approach could generate regions that are most
useful to the domain scientists.
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