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ABSTRACT
The extensive adoption of Deep Neural Networks has led to their
increased utilization in challenging scientific visualization tasks.
Recent advancements in building compressed data models using
implicit neural representations have shown promising results for
tasks like spatiotemporal volume visualization and super-resolution.
Inspired by these successes, in this work, we develop compressed
neural representations for multivariate datasets containing tens to
hundreds of variables. Our approach utilizes a single network to
learn representations for all data variables simultaneously through
parameter sharing. This allows us to achieve state-of-the-art data
compression, as the number of parameters in our model is signifi-
cantly smaller than the number of multivariate data points. Through
comprehensive evaluations, we demonstrate superior performance
in terms of reconstructed data quality, rendering and visualization
quality, preservation of dependency information among variables,
and storage efficiency.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Human-
centered computing → Visualization.
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1 INTRODUCTION
Efficiently analyzing and visualizing multivariate scientific datasets
is essential for gaining insights into various natural phenomena. Sci-
entists from diverse domains utilize computational simulations to
generate complex multivariate datasets, often comprising hundreds
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of variables. Instead of examining each variable independently, ex-
ploring the interaction among multiple variables concurrently is a
powerful approach for studying intricate scientific phenomena us-
ing such datasets [20]. For example, in weather simulation, while
studying hurricanes, the interaction between pressure, wind velocity,
and precipitation is often jointly examined. Similarly, in combustion
science, researchers investigate mixture fraction, vorticity, and heat
release rate variables simultaneously to understand flame structure
and burning dynamics, analyzing their spatial correlations [1]. These
methods enable a comprehensive understanding of the complex in-
terplay between these variables.

As the size, complexity, and number of variables in multivariate
datasets increase, scientists across various domains face significant
challenges in efficiently storing, managing, analyzing, and visualiz-
ing such data. This challenge becomes particularly pronounced when
dealing with datasets containing hundreds of variables, such as those
in climate and weather forecasting simulations. Consequently, data
scientists are exploring various compression methods [2, 11, 20].
Recently, there has been considerable interest in using deep learn-
ing models to represent univariate data compactly [18, 29]. One
promising approach involves developing models capable of gener-
ating super-resolution data [15, 16, 51]. Although these methods
have achieved impressive results, they have yet to address the direct
compression of multivariate datasets containing a large number of
variables. Moreover, it is crucial to comprehensively evaluate such
models to ensure: (1) faithful on-demand reconstruction of all vari-
ables with high accuracy, (2) preservation of variable relationships
(dependencies) in reconstructed data, and (3) meaningful results in
various types of multivariate analysis tasks.

In this work, the primary focus is on thoroughly studying the
viability of implicit neural representations (INRs) for modeling a
large number of variables (tens to hundreds) jointly using a network.
In this work, we investigate whether using a single INR to model
all variables jointly can efficiently learn such a diverse set of vari-
ables. We aim to evaluate the achievable reconstruction quality of
this approach and compare it with alternative data reduction meth-
ods, including state-of-the-art data compression methods. To achieve
this, we employ a residual SIREN architecture that simultaneously
learns representations of a large number of variables using a sin-
gle network, producing high-quality reconstructions of the modeled
variables. By using a single network, we leverage parameter sharing
across all data variables, enabling us to achieve a high compression
ratio. We conduct a rigorous evaluation of the network’s prediction
quality from different perspectives, comparing it with other competi-
tive approaches to demonstrate its superior prediction quality and
compression rate. Our evaluation encompasses assessments in the
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data domain, image space, and feature space using various scien-
tific datasets comprising up to hundreds of variables. In addition to
comparing prediction quality using conventional data reconstruction
and image-space metrics, we also perform a detailed comparative
analysis using important multivariate application-specific tasks. We
examine the accuracy of inter-variable relationships (both linear and
non-linear correlations) in the reconstructed data and assess their per-
formance in conducting multivariate analyses. Finally, we investigate
the performance of our model under varying conditions, including
changes in the number of variables, variations in the amount of
training data, and adjustments to the network depth. Our findings
suggest that implicit neural representations are effective in captur-
ing intricate patterns from multivariate scientific datasets, which
contain numerous variables, and can efficiently represent complex
multivariate data in a compact manner.

2 RELATED WORKS
2.1 Multivariate Data Analysis and Visualization
Multivariate data analysis and visualization is a popular research area
with many applications in various domains [7, 49]. Sauber et al. [35]
propose a multifield-graph-based technique for determining the local
correlation coefficients between various variables, facilitating the
visualization and analysis of multivariate data. Gosink et al. [13] use
local statistical distributions to improve it further for Query-driven
analysis. To identify the interesting regions of multivariate datasets,
local statistical complexities are utilized by Jänicke et al. [25]. For
time-varying multivariate datasets, information theory is used to
discover the causal relationship among variables [44]. Biswas et
al. [5] use information theory to study variable interaction, and Dutta
et al. [11] perform multivariate sampling.

2.2 Deep Learning for Scientific Visualization
Deep learning has found numerous applications in scientific visual-
ization. Techniques for generating compact neural representations
of scientific scalar data are proposed by Lu et al. [30] and Weiss
et al. [47]. Hong et al. [24], He et al.[22], and Berger et al. [24]
study the visualization of scalar field data using volume-rendered
images. Weiss et al. [46] use isosurfaces for the same and further
explored an adaptive sampling guided method for volume data visu-
alization [48]. Rendering data from various viewpoints was achieved
by NeRF [32]. For compressing the volume data, new models for
domain knowledge-aware latent space generation techniques for
scalar data are also proposed [36]. Generation of high-resolution
spatiotemporal volumes from low-resolution data [15, 16, 51] is
another research area of focus. Also, for visualizing and exploring
the parameter spaces for ensemble data, DNNs are utilized as sur-
rogates [22, 37, 38]. Graph convolutional networks are explored
by Han and Wang [17] for learning surface representations. Han
et al. [19] suggest a variable-to-variable translation technique for
scientific multivariate data. The utilization of Convolutional Neu-
ral Networks (CNNs) for examining flow field characteristics was
introduced in the study [52]. Han and colleagues proposed the re-
construction of vector data from 3D streamlines in their work [14].
Flowmap in the flow field dataset was reconstructed from neural
representations in [34]. Additionally, Berenjkoub et al. demonstrated

the recent advancement in CNN-based extraction of vortex bound-
aries, as discussed in [4]. There are many more applications of deep
learning in scientific visualization, and for a more detailed review,
please refer to the state-of-the-art survey [43].

2.3 Data Compression and Summarization
Data compression and summarization techniques have become in-
creasingly pivotal as scientific datasets have grown significantly in
recent years. Scientists have adopted several approaches to reduce
the size of data with minimal loss of information. One such approach
is to use compression techniques [2, 8, 28] to rapidly reduce the size
of datasets and then decompress them during analysis and visual-
ization. Woodring et al. [50] apply Wavelet-based compression to
compress climate data. Statistical methods for data summarization
and reduction have been extensively studied. More importantly, sta-
tistical Copula-model-based [20] and multivariate sampling [11]
approaches have been investigated recently for summarizing multi-
variate datasets. For a detailed summary of existing data reduction
techniques, please refer to the following state-of-the-art survey [27].

3 LEARNING MULTIVARIATE DATA USING
IMPLICIT NEURAL REPRESENTATION

3.1 Implicit Neural Representation
Implicit neural representations with periodic activation functions
have emerged as a promising approach for learning coordinate-based
datasets such as images, scientific data, shape-based data, etc. Sitz-
mann et al. [39] showed that a feed-forward neural network with si-
nusoidal activation function, when initialized with a carefully chosen
weighting scheme, can be used to model various types of coordinate-
based data efficiently. Such networks are known as SIREN (sinu-
soidal representation network) [39]. Several variations of SIREN
have been employed in the visualization research community to
learn scalar field data [29], and model representations of various
visualization types [18]. In a recent research, Tang and Wang used
implicit neural networks to generate spatiotemporal super-resolution
of scientific data from low-resolution representations [42].

3.2 Motivation
In this work, we employ a modified SIREN for modeling multivari-
ate datasets with a large number of variables. In multivariate data,
different variables contain different features and patterns, adding to
the complexity of the data. Subsets of variables also often show the
existence of complex local and global dependencies [5]. Hence, the
primary motivation of our work is to investigate whether a SIREN-
based neural network can accurately learn complex variable dynam-
ics with a very large number of variables in the dataset. A potential
reason for reduced accuracy on this task could be that the data
variability across a large number of variables negatively impacts
training, causing performance deterioration. Such a network may
also require many hidden layers to successfully learn the multivariate
data patterns, increasing the model complexity. Besides these possi-
ble pitfalls, we also aim to investigate the amount of compression
that can be achieved by using such a neural representation compared
to existing state-of-the-art data reduction techniques, such as tensor
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Figure 1: Schematic architecture of MVNet. It uses a residual
SIREN architecture to enhance its learning capability.

compression [2]. Finally, we also seek to evaluate (a) how accu-
rately such a network preserves the dependency among the variables
and (b) the effectiveness of the reconstructed data in performing
important multivariate analysis tasks.

3.3 Model Architecture
We build our MultiVariate data representation Network (MVNet),
based on a SIREN architecture [39]. Our goal is to learn the repre-
sentation of multivariate data as a function, which is represented by
the parameters of a neural network. We want the size of the neural
network to be significantly smaller than the size of the raw multivari-
ate data so that a compressed multivariate data model is produced for
efficient analysis and visualization. Our model represents a function
that takes a 𝑑 dimensional location vector, i.e., for 3D volumetric
data, 𝑑 = 3, and we pass the coordinate of the grid point as input
and predict a 𝑣 dimensional vector output where 𝑣 is the number
of variables in the multivariate dataset. Essentially, our neural net-
work learns a function F (𝜃 ) : R𝑑 ↦→ R𝑣 , where 𝜃 represents the
parameters of the neural network.

We build a multilayer perceptron consisting of 𝑑 neurons as in-
puts, followed by 𝑙 hidden layers, and an output layer containing 𝑣

neurons. For boosting the model’s learning capability and training
a deep network stably, we enhance this architecture by incorporat-
ing residual blocks and skip connections [21]. By formulating the
learning of 𝑣 variables using a single neural network, we pose this
as a simple multi-task learning problem [6]. As the variables in the
scientific datasets are often correlated [5, 20], we believe that such
inter-dependencies can help our network to learn the diverse patterns
of all the variables efficiently, where learning representations of one
variable is considered as a single task, and the network learns all the
variable representations jointly. The applicability of multi-task learn-
ing where the dataset has several related variables has been shown to
be effective by researchers in the past [6, 23, 31]. Furthermore, using
a single network to learn all the variables jointly for a multivariate
dataset also helps us to obtain a compact representation of the entire
data since the network parameters are shared, and hence the output
storage requirement for the network is minimal.

In Fig. 1, a schematic of our model architecture is shown. We use
a sinusoidal activation function for its superior performance over
alternative activation functions such as ReLU and Sigmoid [39]. It
can be seen that the network takes a 𝑑 dimensional location vector as
input and predicts a 𝑣 dimensional vector output, where each element
of the output vector indicates the value of an individual variable. To
train this network, we use the Adam optimizer [26] and the conven-
tional mean squared error (MSE) loss (L𝑚𝑠𝑒 ) function. We conduct
a thorough hyperparameter search to find the best parameters and

learning rate for the Adam optimizer. While computing the MSE
loss, we use equal weight on loss values for all the variables. To
train MVNet in a stable manner, we normalize the input coordinates
between 0 and 1 and rescale the values of each variable between -1
and 1.

4 COMPARATIVE STUDY
To show the efficacy of MVNet over the existing data compression
and summarization approaches, we present a thorough comparative
study. We use four multivariate datasets to demonstrate the results.
The dimensionality, number of variables, and spatial resolution of the
datasets are reported in Table 1. We use a GPU server with NVIDIA
GeForce GTX 1080Ti GPUs with 12GB GPU memory for all the
experimentation. All the models are implemented in PyTorch [33].
Hurricane Isabel data was produced by the Weather Research and
Forecast model, courtesy of NCAR and the U.S. National Science
Foundation. The Turbulent Combustion dataset is made available by
Dr. Jacqueline Chen at Sandia Laboratories through the U.S. Depart-
ment of Energy’s SciDAC Institute for Ultrascale Visualization. The
Climate50 and Climate100 datasets were obtained from the Earth
System Grid Federation’s online data repository. The dataset was
generated by Energy Exascale Earth System Model (E3SM). First we

Table 1: Description of datasets used in the experimentation.

Dataset Dimensionality #Variables Resolution
Combustion 3D 5 240×360×60

Isabel 3D 14 250×250×50
Climate50 2D 53 2880×1440

Climate100 2D 100 2880×1440

compare MVNet with three different data compression approaches.
The first one is the baseline, where the multivariate dataset is first
sub-sampled into a lower resolution grid using linear interpolation,
and then again linear interpolation is used to up-sample the data
back to the original grid resolution. Typically such sub-sampling
is often used as a means of data reduction. We call this method as
LERP. The second method is the state-of-the-art tensor compression,
TTHRESH [2]. The third method is another widely used floating
point compression method Zfp [28]. We compare the reconstruction
quality of all the variables using Peak Signal to Noise Ratio (PSNR).
To conduct a comparison in feature space, we use isocontour similar-
ity to estimate the accuracy of isocontours generated by each method.
Next, to evaluate the visualization quality in image space, we render
images of data variables and compare their accuracy by comparing
them against the ground truth. Finally, we compare MVNet with the
statistical Copula-based summarization method proposed in [20].

4.1 Comparison of Reconstructed Data Quality
The quality of the reconstructed data is quantitatively compared by
computing the PSNR values for each data variable for each method.
Our goal is to compare MVNet against TTHRESH, Zfp, and LERP
by comparing the reconstructed data quality given comparable stor-
age footprint. We find that MVNet with 10 residual blocks with 120
neurons in each layer produces the best quality vs. storage trade-
off. Hence, in the following, unless it is mentioned otherwise, all
the results and visualizations are generated from MVNet with 10
residual blocks with 120 neurons per hidden layer. In Table 2, the
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Figure 2: Comparison of reconstruction quality for MVNet,
LERP, and TTHRESH. We provide a boxplot for each method
for each dataset so that the mean, median, maximum, and min-
imum PSNR values for each method can be conveniently com-
pared. We observe that MVNet consistently delivers superior
PSNR compared to LERP and TTHRESH.

results for all the four methods are provided. We use Zfp with both
fixed bitrate (FBR) and fixed absolute error (FAE) as compression
guideline. Since the datasets contain a large number of variables and
due to space constraints, we present the average PNSR values of
all the variables in Table 2. We observe that TTHRESH, Zfp, and
LERP methods produce reconstructed data with lower PSNR than
MVNet, even with slightly higher storage. Hence, MVNet gives
the best trade-off between storage and PSNR. We further observe
that, between Zfp and TTHRESH, TTHRESH gives better trade-off.
Hence, we use only TTHRESH for the subsequent analyses and
visualization. Next, Fig 2 shows a joint boxplot comparing PSNR
values for MVNet, LERP, and TTHRESH across various datasets.
In each boxplot, we show the mean, median and further map the
maximum and minimum variable PSNR values to the whiskers. A
box plot is drawn for each dataset for each method. The boxplots
illustrate that MVNet achieves higher PSNR values, compared to
LERP and TTHRESH, showing its superior and consistent recon-
struction performance. Finally, in Table 3, we report the average
absolute maximum error, 95th percentile absolute error and the frac-
tion above the tolerance level (0.05) for all the variables for MVNet.
Note that, we compute these error statistics on variable values scaled
between -1 to 1 to obtain consistent and comparable error statistics.

Table 2: Quantitative comparison of average reconstruction qual-
ity for all the variables vs. storage overhead for MVNet and other
methods. All raw datasets are stored using VTK data format. It
is observed that MVNet produces higher reconstruction quality
with the minimum storage.

Dataset
Raw
Stor.
(MB)

MVNet TTHRESH LERP ZFP (FBR) ZFP (FAE)

Stor.
(KB)

PSNR
(dB)

Stor.
(KB)

PSNR
(dB)

Stor.
(KB)

PSNR
(dB)

Stor.
(KB)

PSNR
(dB)

Stor.
(KB)

PSNR
(dB)

Comb. 108 1160 52.51 1608 49.89 1816 32.47 1400 30.45 4284 46.88
Isabel 158 1164 47.32 2072 44.94 2164 37.74 1960 34.87 1856 39.07

CLM50 842 1184 51.27 2792 47.10 2052 33.01 21836 18.79 8808 17.97
CLM100 1568 1208 49.68 4568 48.62 3076 33.25 47200 23.99 9160 22.2

Table 3: Maximum absolute error, 95th percentile absolute er-
ror, and fraction above tolerance (0.05) for MVNet for all the
datasets.

DataSet Max. Error 95th Percentile error Frac. above tolerance (0.05)
Combustion 0.056 0.012 0.000012

Isabel 0.371 0.026 0.004
climate50 0.103 0.021 0.013
climate100 0.144 0.029 0.06

(a) GT (b) MVNet (c) TTHRESH (d) LERP

Figure 3: Visualization of isosurface of Velocity Magnitude at
isovalue=41 of Isabel dataset with ground truth (GT) shown in
Fig. 19a. Isosurface produced by LERP is least accurate while
MVNet and TTHRESH produce visually comparable results.

4.2 Comparison of Reconstructed Feature Quality
Isocontours are considered important feature representations in sci-
entific datasets. Hence, we evaluate the accuracy of the extracted
isocontours for the three methods. Given a dataset, we first uniformly
randomly select 20 isovalues for each variable and then extract those
isosurfaces. Then, we compute the Hausdorff distance and Chamfer
distance [3] for each isocontour against the ground truth isocontours
extracted from the raw data. This study is conducted for the 3D
datasets. The average isocontour distance over 20 isocontours is
computed for each variable, and finally, the average of such variable-
wise average values is computed for each dataset. Table 4 shows the
results of this feature-based comparison. We observe that, on average,
the accuracy of the isocontours is the highest for MVNet compared
to TTHRESH and LERP. In Fig. 19, we show the visualization of
a representative isosurface generated from Isabel dataset using the
Velocity field with isovalue=41. We observe that the MVNet and
TTHRESH produce visually comparable results, while the isosurface
generated by the LERP fails to capture detailed surface features.

Table 4: Quantitative feature quality comparison using average
Chamfer and Hausdorff distances for all data variables for two
3D datasets. The findings indicate that for both the datasets,
MVNet outperforms TTHRESH and LERP regarding isocon-
tour reconstruction quality.

Dataset MVNet TTHRESH LERP
Chamfer ↓ Hausdorff ↓ Chamfer ↓ Hausdorff ↓ Chamfer ↓ Hausdorff ↓

Combustion 0.250 11.937 0.344 13.813 5.715 32.187
Isabel 0.955 23.016 2.814 36.131 12.959 60.941

4.3 Comparison of Visualization Quality
Next comparative evaluation is conducted in image space to study the
accuracy of the visualizations generated using the reconstructed data.
We use selected variables from Isabel and Climate50 data to conduct
this study. While generating images, we keep all the rendering set-
tings fixed for each dataset. To quantify the image similarity between
the ground truth image and images generated by each method, we
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Table 5: Visualization quality comparison in image space. We
use SSIM, LPIPS, and DISTS measures to quantify perceptual
image similarity between ground truth and the images generated
by MVNet, TTHRESH, and LERP methods.

Dataset Var Name SSIM ↑ LPIPS ↓ DISTS ↓
MVNet TTHRESH LERP MVNet TTHRESH LERP MVNet TTHRESH LERP

Isabel P 0.991 0.936 0.675 0.049 0.248 0.356 0.053 0.224 0.243
Vel 0.956 0.95 0.858 0.085 0.075 0.174 0.081 0.115 0.299

Climate50 U10 0.975 0.914 0.744 0.003 0.023 0.155 0.028 0.221 0.15
CLDTOT 0.987 0.967 0.88 0.005 0.014 0.137 0.036 0.191 0.198

(a) GT (b) MVNet (c) TTHRESH (d) LERP

Figure 4: Reconstructed data visualization for Pressure (P) vari-
able of Isabel dataset. Images generated by ground truth (GT),
MVNet, TTHRESH, and LERP are shown from left to right. We
observe that MVNet produces the most accurate result.

use (1) Structural Similarity (SSIM) [45], (2) Learned Perceptual
Image Patch Similarity (LPIPS) [53], and (3) Deep Image Structure
And Texture Similarity (DISTS) [10]. The results are presented in
Table 5. While MVNet produces the most accurate visualizations,
the LERP consistently yields the least accurate visualizations. For
a qualitative comparison, in Fig 16 and Fig 5, we provide visual-
izations of selected variables from Isabel and Climate100 dataset
respectively. From Fig 16, we observe that MVNet produces the
most accurate result while TTHRESH and LERP-generated images
contain visual artifacts as shown by the highlighted red dotted re-
gions. From Fig 5 shows a similar finding as Fig 16. By observing
the zoomed inset, we see that MVNet produces the most accurate
result for the U10 variable and TTHRESH-generated image contains
visual artifacts (as highlighted by red dotted box in the zoomed view
of Fig. 5c). The LERP method fails to preserve the features and
produces the least accurate result.

4.4 Comparison with Copula-based Method
Representing multivariate datasets with a large number of variables
compactly using statistical Copula-based summaries was proposed
by Hazarika et al. [20]. Since our method is addressing the similar
problem, we use the Climate50 and Climate100 datasets to compare
MVNet with the Copula-based summarization method [20]. To keep
the storage footprint minimal for the Copula-based model, we model
each variable in a block using Gaussian distribution, which only
requires two floating points per variable per block. We also store
the pairwise correlation coefficient for all pairs of variables for each
data block. To make the storage size comparable to MVNet, we use
80× 80 block size for the Climate50 dataset and 120× 120 block size
for the Climate100 dataset for Copula modeling. For both MVNet
and Copula-based methods, we reconstruct all the variables at their
original resolution. In Table 6, the quality (average PSNR across all
variables) vs. storage trade-off is presented. We observe that MVNet
produces significantly higher-quality reconstruction with lower stor-
age (as shown in boxplot of Fig. 6). Due to space limitation, we

show visualization of a representative variable, Surface Temperature
(TS), in the supplementary material.

Table 6: Quantitative comparison of the data reconstruction
quality between MVNet and Copula-based data summarization
method using Climate dataset. It is observed that MVNet pro-
duces higher reconstruction quality with lower storage overhead.

MVNet Copula-based Method

dataset #Variables Storage ↓
(KB)

PSNR ↑
(dB)

Block
Size

Storage ↓
(KB)

PSNR ↑
(dB)

Climate50 53 1184 51.274 80X80 5116 33.618
Climate100 100 1208 49.679 120X120 7108 32.192

5 MULTIVARIATE APPLICATION STUDY
5.1 Multivariate Dependency Analysis
Variables in multivariate scientific datasets are often correlated with
other variables in the dataset. The nature of this correlation or inter-
dependence can be both linear and non-linear [5]. By analyzing and
visualizing such correlated (dependent) variables, complex multivari-
ate features are often studied [5, 20, 35, 41]. Hence, it is essential
to preserve such correlations for any multivariate data modeling
technique. In this section, we compare the accuracy with which cor-
relation (linear and non-linear) is preserved in datasets reconstructed
by the MVNet, TTHRESH, and LERP methods. We use Pearson’s
Correlation Coefficient to quantify linear dependence and Mutual
Information to measure non-linear dependence between all variable
pairs for each method. Next, to compute the error in these estimated
correlation and mutual information values, we compute the absolute
difference between each estimated value and the ground truth value
for each variable pair. In Table 7, we show the average absolute
error value computed over the three methods’ variable pairs for each
dataset.

It is observed that, in terms of linear correlation error (deviation),
for Combustion data, TTHRESH incurs the least average error, and
for all other datasets, MVNet produces the minimum average error.
Next, it is found that MVNet produces the least average absolute
error in mutual information for all the datasets. LERP produces the
highest error while estimating both linear correlation and mutual in-
formation. Therefore, from Table 7, we conclude that MVNet is able
to recover the dependencies among variables most accurately when
compared against TTHRESH and LERP. In Fig. 7 and Fig. 8, we
show all pairwise correlation and mutual information error matrices
for Isabel and Climate50 datasets, respectively. Since we show the
absolute error values in these matrices, if a matrix has fewer darker
cells, then it can be interpreted that the corresponding method pro-
duces fewer errors in correlation or mutual information estimation.
We use a consistent color map while generating these plots across
the three methods so that the same color intensity in two different
plots indicates the same absolute error value, making the matrix
plots visually comparable. We observe that between Figs. 7(a)-(c),
Fig. 7(a), and between Figs. 7(d)-(f), Fig. 7(d) produces a minimum
error indicating MVNet’s superiority over TTHRESH and LERP in
estimating linear correlation. Similarly, from Fig. 8, by comparing
Figs. 8(a)-(c) and Figs. 8(d)-(f), we conclude that MVNet produces
the most accurate mutual information estimation as compared to
TTHRESH and LERP.
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(a) Ground truth (b) MVNet (c) TTHRESH (d) LERP

Figure 5: Reconstructed data visualization for the U-Velocity (U10) variable of the Climate100 dataset. Images generated by ground
truth data, MVNet, TTHRESH, and LERP methods are shown from left to right with a region zoomed below to show the differences.
We observe that MVNet produces the most accurate result, while the result from TTHRESH shows artifacts as highlighted by the red
dotted box in Fig. 5c. The LERP method-generated image is the least accurate.

Figure 6: Boxplot-based comparison of PSNR for MVNet and
Copula method for Climate50 and Climate100 datasets.
Table 7: Comparison of average absolute error in linear correla-
tion and mutual information for different methods.

Dataset Error in Linear
Correlation ↓

Error in Mutual
Information ↓

MVNet TTHRESH LERP MVNet TTHRESH LERP
Combustion 0.002139 0.000919 0.170004 0.115754 0.226789 0.258035

Isabel 0.082532 0.188319 0.284613 0.195037 0.316863 0.227967
Climate50 0.032771 0.057524 0.268297 0.601893 1.535684 0.787852
Climate100 0.109252 0.137031 0.737098 1.554588 2.497101 1.963269

Table 8: Comparison of the accuracy of multivariate QDV for
different methods. Query accuracy between a method and the
ground truth result is quantified using the Dice Similarity Co-
efficient (DSC). It is observed that MVNet produces the most
accurate results for both datasets.

Dataset Multivariate
Query MVNet DSC ↑ TTHRESH DSC ↑ LERP DSC ↑

Combustion Mixfrac >0.3 & <0.7 &
Y_OH >0.006 & <0.1 0.9914 0.988 0.8966

Isabel
CLOUD >0.0001 & <0.002 &
PRECIP >0.0001 & <0.0093 &

QVAPOR >0.01 & <0.0235
0.7815 0.7083 0.3569

5.2 Multivariate Query-Driven Visual Analysis
Multivariate variable interaction analysis using query-driven visu-
alization (QDV) is an effective approach for large scientific data
exploration [11, 12, 20, 40]. Scientists often perform queries on a
group of variables jointly to filter a subset of related data points for
detailed feature analysis. Such query-driven analyses help reduce the
explorable data size and scientists’ cognitive load while accelerating

the scientific discovery process. Therefore, we study the efficacy of
MVNet in performing multivariate QDV. To compare the accuracy
of the QDV results, we compute the Dice Similarity Coefficient
(DSC) [9] between the query result obtained from ground truth data
and the other methods. The value of DSC varies between 0 and 1,
where 1 indicates a perfect match. The results and the exact queries
are summarized in Table 8.

We execute a query on the Hurricane Isabel dataset involving
variables CLOUD, PRECIPITATION, and QVAPOR to study the
cloud structure and regions where high rainfall is possible. We jointly
query moderate to high value ranges for each variable. The exact
query is shown in Table 8. In another experiment, we perform QDV
for Combustion data. Turbulent Combustion data is studied to un-
derstand the complex combustion process and the interplay among
fuel, oxidizer, and other chemical components [1]. The interaction
between mixture fraction (Mixfrac) and mass fraction of Hydroxyl
(Y_OH) variables can be studied to understand the flame structure.
Hence, we conduct a QDV using these two variables to isolate data
points that indicate the potential flame structure [1]. From Table 8,
we observe that MVNet produces the most accurate query results
among all the methods for both datasets. In Fig. 17 and Fig. 18, the
results of these QDV are shown. We observe that compared to the
ground truth, MVNet produces visually similar results, whereas the
LERP method produces the least accurate results.

6 EVALUATION & PARAMETER STUDY
6.1 Varying Number of Variables
To evaluate the performance of MVNet in this regard, we conduct
experiments where we gradually increase the number of variables
while keeping the architecture of MVNet fixed. Only the number of
neurons in the output layer is adjusted to accommodate the varying
number of variables. All other hyperparameters are set to the best
configuration determined from experimentation (details are in sup-
plementary document). The results are depicted in Fig. 11 where
different colors representing different datasets. As the number of
variables increases, the learning task becomes more challenging,
leading to a gradual decrease in the average PSNR value across all
variables. However, it’s worth noting that even when trained with
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(a) Corr diff matrix of
Isabel for MVNet

(b) Corr diff matrix of
Isabel for TTHRESH

(c) Corr diff matrix
for Isabel for LERP

(d) Corr diff matrix
for clim50 for MVNet

(e) Corr diff matrix of
clim50 for TTHRESH

(f) Corr diff matrix for
clim50 for LERP

Figure 7: Linear Correlation Error Matrices for Isabel and Climate50 dataset for MVNet, TTHRESH, and LERP method.

(a) MI diff matrix for
Isabel for MVNet

(b) MI diff matrix for
Isabel for TTHRESH

(c) MI diff matrix for
Isabel for LERP

(d) MI diff matrix for
climate50 for MVNet

(e) MI diff matrix for
clim50 for TTHRESH

(f) MI diff matrix for
climate50 for LERP

Figure 8: Mutual Information Error Matrices for Isabel and Climate50 dataset for MVNet, TTHRESH, and LERP method.

(a) Ground truth (b) MVNet (c) TTHRESH (d) LERP

Figure 9: Query-driven visualization for the Isabel dataset. A
multivariate query: (CLOUD >0.0001 AND <0.002) AND (PRE-
CIPITATION >0.0001 AND <0.0093) AND (QVAPOR >0.01
AND <0.0235) is shown.

(a) Ground truth (b) MVNet (c) TTHRESH (d) LERP

Figure 10: Query-driven visualization for the Combustion
dataset. A multivariate query: (Mixfrac >0.3 AND <0.7) AND
(Y_OH >0.006 AND <0.1) is shown.

the maximum number of variables, MVNet maintains a high aver-
age PSNR for each dataset. Furthermore, Table 9 highlights that
employing a deeper MVNet model can further enhance PSNR, pro-
viding the option for users to obtain higher-quality reconstructions
if desired. These findings offer valuable insights for users regarding
the trade-off between expected quality and storage overhead across
different datasets and variable configurations.

6.2 Compression Ratio vs. Prediction Quality
The architecture of MVNet relies on residual blocks, which allows
for increasing the network’s depth to potentially enhance prediction
quality and generalizability. However, this also increases model
complexity, leading to higher storage requirements. To understand
the trade-off between storage and prediction quality, we conducted
an experiment varying the number of residual blocks from 4 to 14,

Figure 11: The variation of average PSNR when the number of
variables increases. We keep the MVNet architecture fixed and
only change the number of neurons in the final layer.

Figure 12: Average PSNR values under different sampling per-
centages for different datasets.

while keeping the number of neurons per hidden layer constant
at 120. This analysis also sheds light on MVNet’s compression
capabilities. The results, presented in Table 9, reveal that with only 4
residual blocks, MVNet achieves maximum compression ratio while
maintaining good average PSNR across datasets. This trade-dff is
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Table 9: Average PSNR, storage footprint, and compression ratio (CR) under varying numbers of residual blocks to study the trade-off
between compression ratio and PSNR. We observe that MVNet maintains a high PSNR even when fewer residual blocks are used.

Dataset Num. of Res. Block = 4 Num. of Res. Block = 6 Num. of Res. Block = 8 Num. of Res. Block = 10 Num. of Res. Block = 12 Num. of Res. Block = 14
Storage

(KB) CR PSNR
(dB)

Storage
(KB) CR PSNR

(dB)
Storage

(KB) CR PSNR
(dB)

Storage
(KB) CR PSNR

(dB)
Storage

(KB) CR PSNR
(dB)

Storage
(KB) CR PSNR

(dB)
Combustion 468 236.2:1 45.567 700 157.9:1 48.386 928 119.14:1 50.701 1160 95.3:1 52.521 1388 79.65:1 53.984 1620 68.25:1 55.411

Isabel 472 343.13:1 44.207 704 230.05:1 45.464 932 173.77:1 46.381 1164 139.13:1 47.634 1396 116.01:1 47.947 1624 99.72:1 49.168
Climate50 492 1753.38:1 44.038 720 1198.14:1 46.697 952 906.15:1 48.740 1184 728.6:1 51.367 1412 610.95:1 52.805 1644 524.73:1 54.152

Climate100 512 3172.01:1 42.784 744 2182.89:1 45.303 976 1664:1 47.380 1204 1348.89:1 49.991 1436 1130.96:1 51.515 1664 976:1 52.624

Table 10: Hyperparameters, training and inference time. All
experiments are done on a GPU server with NVIDIA GeForce
GTX 1080Ti GPUs with 12GB GPU memory

Dataset Learning
Rate

Batch
Size

Decay
Rate

Decay
Frequency

Training
Time (Hrs.)

Inference
Time (Secs.)

Combustion 0.00005 2048 0.8 Every 15th Epoch 3.89 2.04
Isabel 0.0001 2048 0.8 Every 15th Epoch 2.32 1.46

Climate50 0.0001 2048 0.8 Every 15th Epoch 2.72 3.96
Climate100 0.0001 2048 0.8 Every 15th Epoch 2.93 10.38

Figure 13: Change of average PSNR when number of res. blocks
are varied. The corresponding compression ratio is also shown
at the top of each bar.

also provided as a form of grouped bar chart in Fig. 13. Notably, as
the number of variables increases in multivariate datasets, MVNet
offers higher compression ratios due to its consistent network size.

6.3 Varying Amounts of Training Data
As computational capabilities advance, storing entire high-resolution
multivariate datasets becomes increasingly costly. In such cases,
storing sub-sampled data becomes a viable option to reduce storage
requirements for offline analysis and visualization. Consequently,
training MVNet on sub-sampled data becomes necessary. To in-
vestigate the effectiveness of MVNet under these circumstances,
we conducted a comprehensive experiment by training MVNet us-
ing 25%, 50%, 75%, and 100% data samples, randomly selected
uniformly. The Fig. 12 illustrates the average quality of the recon-
structed data variables for various datasets. We observe a steady
increase in reconstruction quality with more training samples. How-
ever, it’s noteworthy that the rate of improvement in PSNR values
isn’t significantly high with increasing sample points. Even at a low
sampling rate of 25%, MVNet can still achieve very good average
PSNR, suggesting its efficacy when trained on sub-sampled data.

6.4 Hyperparameters, Training, and Inference
Timing of MVNet

The hyperparameters, timings for both training and inference of
MVNet are presented in Table 10. Consistency is maintained by

training MVNet for 300 epochs across all datasets. It’s demonstrated
that MVNet achieves rapid reconstruction (inference) of all variables,
with inference time correlating to the number of variables in the mul-
tivariate dataset. Table 10 illustrates training time using the optimal
hyperparameter combinations for each dataset. Through comprehen-
sive evaluation, it’s noted that increasing the batch size decreases
training time, and training time scales with both the number of data
points and variables.

7 DISCUSSION
This work demonstrates the effectiveness of utilizing residual im-
plicit neural representations with sinusoidal activation functions to
model complex multivariate scientific datasets when initialized with
carefully selected weights and hyperparameters. Our primary focus
is on datasets featuring a large number of variables with dynamic
characteristics, enabling us to assess the model’s performance com-
prehensively. We compare MVNet against established methods such
as tensor compressor TTHRESH, Zfp, and Copula modeling, and
employ various metrics to assess reconstructed data, feature, and
image quality. We further delve into MVNet’s ability to recover both
linear and nonlinear dependencies among variable combinations,
which is important for multivariate data analysis. We then com-
paratively study the efficacy of MVNet in carrying out important
multivariate tasks such as query-driven visual analysis. We con-
duct experiments to report the trade-off between compression ratio
and prediction quality, allowing users to use this as a guideline for
selecting the appropriate model architecture for their dataset. We
also depict how increasing variables in the dataset impact MVNet’s
overall prediction quality. Depending on the need for reconstruction
quality and the number of variables to be modeled, the users can
select an appropriate depth for MVNet to get a desirable accuracy.
Through our thorough evaluation, we aim to encourage domain sci-
entists to integrate INR-based models, such as MVNet, into their
analysis workflows. These models provide a compact yet versatile
representation of multivariate data, facilitating streamlined analytics
and visualization, and accelerating the scientific discovery process.

8 CONCLUSIONS AND FUTURE WORK
In summary, we introduce MVNet to efficiently capture complex
multivariate scientific data containing a large number of variables.
We undertake a comprehensive investigation to showcase the effec-
tiveness of MVNet compared to state-of-the-art compression and
statistical methods, focusing on the balance between storage and the
reconstruction quality, as well as its performance in several scien-
tific applications. Looking ahead, we aim to expand this work by
applying MVNet to model time-varying scientific datasets including
spatio-temporal vector and tensor data.
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A SUPPLEMENTARY MATERIAL
A.1 Comparison of Gradient Quality
The gradient of scientific data variables has been shown to be an
important quantity to carry out several data analysis tasks, such as
importance-driven sampling and multi-dimensional transfer function
design. Therefore, we conduct a comparison based on the quality
of the gradient computed per grid point from the reconstructed vol-
ume data among the three methods. After reconstructing all the
variables, we compute spatial gradient magnitudes for each grid
location and then compute the PSNR value between the gradient
magnitudes estimated from the ground truth data and the gradients
from the reconstructed data. Table 11 shows the average PNSR val-
ues for all the variables for the three methods. It is observed that
the proposed MVNet results in the most accurate gradients using
the reconstructed data variable values for all the datasets. In Fig. 14,
we show the visualization of the reconstructed gradient magnitude
for a representative variable, Pressure (P), of the Isabel dataset. We
observe that the TTHRESH (Fig. 14c) and LERP (Fig. 14d) gener-
ated gradient fields show visual artifacts, while MVNet (Fig. 14b)
produces the most accurate gradient reconstruction when compared
against ground truth (Fig. 14a).

A.2 Comparison with Copula-based Method:
Visualization Result

In order to compare the quality of the reconstructed data variables
visually, we show a rendering of a representative variable, Surface
Temperature (TS), using MVNet and Copula-based summaries in
Fig. 15. It is seen that MVNet produces a visualization (Fig. 15b)
identical to the ground truth (Fig. 15a). In contrast, the visualization
generated by Copula-based summaries (Fig. 15c) fails to preserve
the detailed features of the TS variable as indicated by black dotted
circles in the image.

Table 11: Quantitative comparison of average gradient mag-
nitude values for all the variables between MVNet and other
methods. It is observed that the PSNR (dB) value computed
between raw data gradient and reconstructed data gradient is
highest for MVNet compared to TTHRESH and LERP.

Dataset MVNet PSNR ↑ TTHRESH PSNR ↑ LERP PSNR ↑
Combustion 52.930 49.566 35.179

Isabel 46.732 45.204 39.460
Climate50 38.453 31.909 38.015
Climate100 38.911 33.896 38.363

https://doi.org/10.1109/TIP.2003.819861
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(a) Ground truth grad. mag. of P
variable.

(b) MVNet generated grad. mag.
of P variable.

(c) TTHRESH generated grad.
mag. of P variable.

(d) LERP generated grad. mag.
of P variable.

Figure 14: Reconstructed gradient magnitude visualization for Pressure (P) variable of Isabel dataset. From left to right, ground truth,
MVNet-generated result, TTHRESH-generated result, and LERP-generated result are provided. We observe that MVNet produces the
most accurate gradient reconstruction, while the TTHRESH and LERP-generated images have artifacts, resulting in reduced accuracy.

(a) Ground truth visualization of TS variable. (b) MVNet generated visualization of TS vari-
able.

(c) Copula-based summary generated visualiza-
tion of TS variable.

Figure 15: Visualization of Surface Temperature (TS) as a representative variable from the Climate100 dataset. Fig. 15a shows the
ground truth, Fig. 15b shows the result reconstructed by MVNet, and Fig. 15c depicts the visualization reconstructed using the
Copula-based summary data. It is observed that MVNet accurately reconstructs the TS variable. In contrast, the copula-based method
fails to preserve the detailed features in the data, as highlighted by black dotted circles in the image.

(a) GT (b) MVNet (c) TTHRESH (d) LERP

Figure 16: Reconstructed data visualization for Pressure (P) variable of Isabel dataset. Images generated by ground truth (GT) data,
MVNet, TTHRESH, and LERP are shown from left to right. We observe that the generated image is the most similar to the ground
truth, while the TTHRESH and LERP-generated images have artifacts (as shown by the red dotted box).
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(a) QDV result for ground truth. (b) QDV result for MVNet. (c) QDV result for TTHRESH. (d) QDV result for LERP.

Figure 17: Query-driven visualization for Hurricane Isabel dataset. A multivariate query: (CLOUD >0.0001 AND <0.002) AND
(PRECIPITATION >0.0001 AND <0.0093) AND (QVAPOR >0.01 AND <0.0235) is shown. We observe that MVNet produces the most
accurate result among the three methods.

(a) QDV result for ground truth. (b) QDV result of MVNet. (c) QDV result of TTHRESH. (d) QDV result of LERP.

Figure 18: Query-driven visualization for the Combustion dataset. A multivariate query: (Mixfrac >0.3 AND <0.7) AND (Y_OH >0.006
AND <0.1) is shown. We observe that while MVNet produces the most accurate result quantitatively, visually, MVNet and TTHRESH
produce similar results, whereas LERP is the least accurate.

(a) GT (b) MVNet (c) TTHRESH (d) LERP

Figure 19: visualization of isosurface of Velocity Magnitude at isovalue=41 of Isabel dataset with ground truth (GT) shown in Fig. 19a.
Isosurface produced by LERP is the least accurate, while MVNet and TTHRESH produce visually comparable results.
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