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ABSTRACT

Creating a data representation is a common approach for efficient
and effective data management and exploration. The compressed
bitmap indexing is one of the emerging data representation used for
large-scale data exploration. Performing sampling on the bitmap-
indexing based data representation allows further reduction of stor-
age overhead and be more flexible to meet the requirements of
different applications. In this paper, we propose two approaches
to solve two potential limitations when exploring and visualizing
the data using sampling-based bitmap indexing data representation.
First, we propose an adaptive sampling approach called information
guided stratified sampling (IGStS) for creating compact sampled
datasets that preserves the important characteristics of the raw data.
Furthermore, we propose a novel data recovery approach to recon-
struct the irregular subsampled dataset into a volume dataset with
regular grid structure for qualitative post-hoc data exploration and
visualization. The quantitative and visual efficacy of our proposed
data sampling and recovery approaches are demonstrated through
multiple experiments and applications.

1 INTRODUCTION

The computation power of modern supercomputers has grown
rapidly in the recent years. According to the latest report, the most
powerful and fastest supercomputer is able to reach the peak per-
formance of more than 125 peta-FLOPS (125 × 1015 floating-point
operations per second). Benefiting from the immense computa-
tion power, scientists are able to run high-resolution simulations in
various scientific disciplines, such as climate modeling and compu-
tational fluid dynamic, and produce large-scale datasets. To store,
manage, and explore such large-scale scientific datasets, appropriate
approaches are crucial.

Data scientists have applied several techniques to tackle the prob-
lem of accelerating analysis and visualization for large datasets.
In particular, parallel computing have been used to speed up the
computation. However, the amount of data generated through high-
resolution scientific simulations put a very high demand on data
storage and communication bandwidth. A strategy to conquer this
challenge is to create a data representation to reduce the data size
and apply data processing and analysis on the compact data rep-
resentation. The compressed bitmap indexing [2, 36] is one of
the emerging data representation used for large-scale data explo-
ration [26, 27, 29, 32, 33]. The benefits of representing raw data by
compressed bitmaps are: (1) It can be created at simulation time,
which avoids storing and transmitting full-resolution data. (2) It
can efficiently respond to a value-based query, which is a common
operation for data analysis and visualization. However, the effec-
tiveness of the bitmap compression scheme based on run-length
encoding is limited. Although the size of compressed bitmaps can
be less than 30% in size compared with the raw data [29], it could
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be still too large to be stored or transferred. A viable solution to
avoid storage or bandwidth limit exceeded for such large dataset is to
perform data sampling before generating bitmaps. This can further
reduce the bitmap size since fewer bits in a bitmap are set to 1 due to
fewer samples, so that larger number of continuous 0s would appear
more frequently in the bitmap, improving the effectiveness of run-
length compression. Through incorporating sampling and bitmap
compression schemes, a bitmap indexing-based data representation
can be created in smaller size which is more flexible to meet the
requirements of different applications.

While performing sampling before generating bitmaps, a desired
property of the sampling approach is to be able to preserve the sta-
tistical characteristics of raw data within the compact subsampled
data. The stratified random sampling (StRS) [6] is such an approach
which draws samples from pre-cluster groups (strata). An advanced
stratified random sampling (AStRS) proposed by Su et al. [28] in-
corporates StRS sampling and bitmap indexing to provide better
characteristic-preserved subsampled data. However, there are two
remaining limitations when applying existing bitmap indexing-based
data representation for data exploration and visualization. First, the
data complexity in each stratum is ignored when performing data
sampling so that the same amount of samples are drawn from each
stratum regardless of its complexity. This can lead to loss of infor-
mation in the strata with high data complexity but keeping redundant
information in the strata with low data complexity. Hence, there
is a need to draw samples according to the information complexity
in each stratum in order to present more representative samples in
the subsampled dataset with compact size. Furthermore, since the
characteristic-preserved sampling method is usually stored as an
irregular grid data, there is a need to reconstruct the data into a
regular grid volume when applying specific types of data analysis
or visualization, such as volume rendering, isosurface rendering, or
local statistical-based applications [10, 19, 22, 33]. However, it is
challenging to have a reconstructed data volume close to the origi-
nal data volume in terms of the quality of samples as well as local
statistical properties.

In this paper, we propose two approaches to tackle these two
limitations for data analysis and visualization when using bitmap
indexing-based data representation. First, we propose an informa-
tion guided stratified sampling (IGStS) to store more representative
samples while preserving characteristics of the raw data and keep
the size of the data representation small. We apply AStRS that sub-
divides the raw samples into several strata and draws samples from
each stratum. The strata are created by partitioning the data space
into multiple non-overlapping blocks and partitioning the whole
data value range into multiple bins. Instead of drawing samples
evenly in each block, we calculate the information entropy to exam-
ine the data complexity in the block and determine the number of
samples to draw according to the entropy value. More samples are
drawn from regions with higher entropy (higher data complexity)
and fewer samples for regions with lower entropy (lower data com-
plexity). Through this adaptive sampling approach, the proposed
bitmap indexing-based data representation allows superior quality
of data analysis and visualization while keeping the storage cost low.
Second, when a regular volume with extended number of samples as
needed, we propose a novel data recovery approach from irregular
subsampled data that incorporates the samples’ spatial information



and value distribution preserved in each local region. We transform
the data recovery problem to the optimal assignment problem and
solve it using the Hungarian algorithm [18]. The idea is to assign a
value to each spatial location based on the likelihood of each value
estimated from the neighboring samples, and to keep the same value
distribution as the preserved one in each local region. This ensures
the value compositions and the local statistical properties in the
reconstructed data are similar to those of raw data. Through solving
the assignment problem, our approach produces recovered data with
small errors in terms of sample values and local statistical properties
and thus is able to provide qualitative data analysis and visualization.

2 RELATED WORK

Benefiting from the huge computation power, scientists are able
to run high-resolution scientific simulations in various scientific
disciplines, such as physical phenomena and climate modeling, with
generating extreme scale datasets. However, due to the limitation of
capacity and bandwidth, scientists usually first reduce the data scale
by only storing a subset of the raw data and apply further processes
and analysis on the compact data representation.

Wavelet compression is one of the notable data compression
technique which has been extensively applied in data analysis and vi-
sualization field. Woodring used wavelet compression in JPEG2000
to provide a bit rate control mechanism to vary data transfer time
versus data quality for remote data analysis and visualization [35].
Lee and Shen applied the discrete wavelet transform to reduce
the storage overhead of the integral histogram for efficient local
histogram queries [19]. Wavelet compression can reduce a large
amount of data size, however, it has to take additional CPU cycles
to transform the data which could be a burden work in scientific
simulation. Distribution-based data representation is another promis-
ing approach of reducing data scale for analyzing and visualizing
large-scale datasets [9, 14, 16, 24]. Thompson et al. [30] stored the
histogram for samples in a local block to form a histogram-based
data representation called hixels with small overhead. Liu et al. [20]
used per-voxel Gaussian Mixture Model to model the samples in a
local block to produce compact data representation. Dutta et al. [7]
also model the sample in a local block by Gaussian Mixture Model
in an in-situ simulation for efficient in-situ analysis and visualization.
A sampling-based approach [21] has been applied to reconstruct the
data value from a distribution-based data representation for data
analysis and visualization [4, 11]. However, the spatial information
and data coherency are not considered in their work when recon-
structing the data, which could lead to high data value variation
and low-quality visualization. Recently, to improve the accuracy
of sampling quality for the distribution-based data representation
irregular-shaped homogeneous partitioning is proposed by Dutta
et al. [8]. In another work, Wang et al. [31] incorporate spatial
distribution information in distribution-based data modeling which
shows improved analysis quality.

Sampling-based data representation is a common solution applied
in the data analysis and visualization field. Woodring et al. [34]
applied KDTree-based stratified sampling to store level-of-detail
sample data in a particle simulation for interactive analysis and
visualization. However, data reorganization is necessary before
performing sampling which increases the computation time of cre-
ating representative data. Su et al. [28] applied stratified sampling
which divides data into multiple strata based on the data spatial and
value information. However, they ignore the data complexity and
draws the same amount of samples from each stratum, which could
lead to insufficient information stored in the regions with high data
complexities. To reconstruct a sample data for high-quality data
analysis and visualization, a sophisticated approach is to construct
the distribution from the subsamples first and use the method of
reconstructing distribution-based data representation. However, this
suffers the same issue that spatial information and data coherency
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Figure 1: An example of performing the stratified sampling on two
bit vectors representing two bins b0 and b1. Upper row: two bit
vectors with full samples. Lower row: two bit vectors after drawing
50% of the samples from each block.

are not considered.

3 BACKGROUND

In this section, we describe the essential techniques that our approach
relies on, bitmap indexing and stratified sampling.

3.1 Bitmap Indexing
Bitmap indexing is an efficient indexing structure that has been
applied in many query-based visualization applications [26, 27, 33].
Because of the advantage of bitwise operations supported by the
computer hardware, it is able to quickly respond to the data value
query. To construct a bitmap for a scientific dataset, the whole data
value range is divided into several groups first (similar to histogram
bins). A bitmap is a table-like data structure where one column
represents one value range (one bin) and is stored in one bit vector,
whose length is the same as the number of data elements. In each
bit vector, a bit is set to 1 if the value in that corresponding voxel
falls into the bin; otherwise it is set to 0.

In addition to providing efficient query response, bitmap indexing
can also be applied to reduce the data size overhead with the com-
pressed version. Several sophisticated compression schemes have
been proposed to shrink the size of the bitmap, and mostly are based
on the run-length encoding scheme, such as Byte-aligned Bitmap
Code (BBC) [2] and Word-Aligned Hybrid (WAH) [36]. In this
work, we apply the WAH32 method to store the subsamples.

3.2 Stratified Random Sampling
The stratified random sampling (StRS) is a commonly used approach
to improve the simple random sampling (SRS) by preserving the
characteristics of the raw data. The concept of StRS is to subdivide
the raw data into several strata and randomly draw the same percent-
age of samples form each stratum. A common way of creating strata
is to partition the data space into multiple non-overlapped spatial
regions. Compared to SRS, the representativeness of the subsampled
data drawn by StRS can be significantly improved by preserving
the spatial distribution of the raw data. This stratified sampling is
also naturally suitable for large-scale scientific simulation since the
simulated data generated region by region (each region is computed
by a processing unit) can be thought of separating the data into
spatial strata [34].

An advanced stratified random sampling (AStRS) is to divide the
samples into several strata based on multiple data properties, which
intends to preserve multiple characteristics of raw data simultane-
ously. One of the AStRS proposed by Su et. al [28] is to sample data
based on the spatial location and data value in order to preserve both
spatial distribution and value distribution simultaneously. They lever-
aged bitmap indexing to subdivide data samples into several value
ranges (bins) first. A bit vector is created as described in Section 3.1.
Each bit vector is then subdivided into several non-overlapped sec-
tors with equal length which is the same concept as spatial partitions.
To create subsampled data, even samples are drawn from each sector
in a bit vector and the same sampling percentage is applied to all
other bit vectors. Figure 1 shows an example of the stratified random
sampling using bitmap indexing. Suppose 50% data are drawn from
two bit vectors representing two bins b0 and b1, which are shown



Figure 2: Comparisons between two data blocks with different data
complexities. Drawing samples evenly in both regions may cause
insufficient information stored in the data block shown in the left
and redundant information stored in the right data block.
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Figure 3: The concept of our information guided stratified sampling.

in the upper part. For each bit vector, we partition the space into
5 blocks and draw samples from each block. To perform drawing
samples on a bit vector, we randomly turn off 50% of the bits in
each block. The sampled bit vector is shown in the lower part.

4 INFORMATION GUIDED STRATIFIED SAMPLING (IGSTS)
In this section, we introduce our information guided stratified sam-
pling approach which stores representative samples that preserve
the properties of the raw data and keep the sample size small si-
multaneously. We follow the concept of StRS used in [34] which
partitions the data space into multiple non-overlapped blocks and
draw samples from each block. It draws samples across the whole
data volume, so the information in all the regions is ensured to be
retained. However, ignoring the data complexity and drawing sam-
ples evenly over the data volume results in imbalanced information
contained in the subsampled data of different region. Drawing fixed
number of samples from each region can lead to information loss in
regions that have high data complexity and redundant information
in regions that have low data complexity. Rather than drawing the
same percentage of samples from each spatial partition, we draw
samples accordingly based on its data complexity, which ensures
that sufficient information is stored for each region. In the mean time,
the storage overhead of subsampled data is managed as compact as
possible. Figure 2 illustrates the issue of drawing samples evenly
regardless of the data complexity in each spatial partition. We select
two different regions in the test data and display their histograms
to show the data complexity. Given a fixed number of samples to
be stored for each region (suppose 10 samples in this example), the
region containing multiple distinct values shown in the left image
cannot be well represented by only 10 samples. On the contrary,
using 10 samples to represent the region with homogeneous value,
like the data block shown in the right image, is unnecessary.

4.1 Entropy-based Stratified Sampling
We apply information theory to evaluate the data complexity for
determining the number of samples that should be drawn from each
local region. Shannon entropy [25] is a common approach for
evaluating the information contained in the samples, which is used
to determine the data complexity in our work. We divide the whole
value range of the raw data into several value interval (bins) to create
a sample histogram and compute the entropy value from it. Let
X = x1,x2, · · · ,xn be the value interval for each bin, n be the number
of bins, and pxi be the probability of a data value falls into xi. The
entropy of data samples can be defined in Equation 1:

H(X) =−
n

∑
i=1

p(xi)log2 p(xi) (1)

Figure 4: An example of creating a compressed bit vector from the
samples ID using WAH32. The data size is 1000 in this example.

The minimum entropy value is 0 which occurs when all sample
values fall into one value range and the maximum entropy value is
log2n which occurs if all the probabilities p(xi), i = 1 · · ·n are the
same. By examining the entropy value, we are able to discriminate
the data complexity between different data. A smaller entropy value
indicates fewer distinct values across samples (lower data complex-
ity) and a larger entropy value indicates more distinct values across
samples (higher data complexity). In order to accurately represent
the raw data using the subsampled data, it’s necessary to take enough
samples to cover all distinct values and retain the similar value com-
positions. This concept is similar to AStRS [28] which draws the
same percent of the samples from each value range. In our work,
we determine the sampling percentage s by entropy values, and the
mapping function is defined as:

s =
2H(X)

n
× f (2)

where f is a sampling factor to allow users to vary the sample size.
The entropy value H(X) can be thought of as the minimum number
of bits are required on average to describe the variable X [13]. In
other words, the number of events occurs in the observing entity is
at least 2H(X). For a histogram, at least 2H(X) of bins is required
to describe the variable. To define the sampling percentage, we
normalize it by the total number of bins for the histogram. Once
the sampling percentage is defined, we then draw samples from
each value interval in order to maintain the same local histograms as
that of full samples. In our work, only one sample is drawn in the
homogeneous region where the entropy value is 0. Figure 3 shows
the overall concept of our sampling approach.

4.2 Subsampled Data Creation using Bitmap Indexing
To record samples with a small storage overhead, we create the sub-
sampled data by utilizing compressed bitmap indexing. One bitmap
is created for each spatial partition. Rather than creating a raw
bitmap for the whole data, and then performing sampling on each
bit vector and compressing it, we create compressed bitmap directly
during sample selection. As mentioned above, while drawing sam-
ples in each partition with the sampling percentage defined above,
we select a subset of samples for each value range. Samples in each
group of value range can be determined when constructing the value
histogram for computing the entropy value by scanning through the
entire set of data points in a region. We then randomly select a
number of samples from each group and store them in the order of
voxel IDs. By knowing the voxel ID for each sample, the number of
consecutive 0s or 1s can be easily retrieved to perform run-length
encoding. Figure 4 shows an example of creating a compressed bit
vector from the samples’ voxel IDs using WAH32. Suppose the
whole data size is 1000 in this example. The first line shows the
voxels’ ID corresponding to the samples drawn from a region. The
second line shows groups with multiples of 31 bits that categorized
to fill-word and literal-word, and each group is encoded accordingly
in a word (32 bits) shown in the third line. By leveraging the com-
pressed bitmap indexing technique [36], all the bitmaps generated
from all spatial partitions can be merged efficiently by applying OR
operations between the compressed bit vectors. This makes our sam-
pling approach suitable for large-scale scientific simulation running
in the distributed system.
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Figure 5: The comparisons between the bitmap generated from the
data within a local block (A), and the bitmap generated from the
data of one row (B).

To further reduce the storage cost of the subsampled dataset, we
apply a data reordering scheme when storing samples using bitmap
indexing. As mentioned above, WAH uses run-length encoding
to encode consecutive 0s or 1s and store it only by one word (32
bits), which implies it can achieve higher compression rate if more
consecutive 0s or 1s appear in a bit vector. In general, the order of
bits in a bit vector is the same as that of voxel IDs which follow the
order of data elements stored in the disk (row-major order). However,
the run length of consecutive 0s or 1s is usually short when using
row-major order for creating a bit vector due to data incoherence.
Instead, we rearrange the bits in block-major order when creating
a bit vector, where the block size is defined by the user. Figure 5
shows an illustration of the difference between using row-major and
block-major order for creating bitmaps. The data value retrieved
from a local block with size 103 (shown in A) is uniform and the
data value retrieved from one row along the x dimension has higher
variance (shown in B). The bit vectors created for A and B are shown
horizontally in the upper figure and lower figure, respectively. The
bit set to 1 is colored black and the bit set to 0 is colored white. In
each bitmap, 10 bins (y axis) and 1000 data points (x axis) are used.
As shown, the bitmap for data A only has one bit vector that has bits
set to 1, so we can only use 10 words to store the bitmap (1 word
for 1 bit vector). On the other hand, the bitmap for data B needs
more storage since bins from bin 4 to bin 8 need several words to
record the discontinuities in those bit vectors. Therefore, the size
of the bitmap can be reduced a lot when storing a bit vector in the
block-major order.

4.3 Error Pre-Calculation
In our work, the sampling percentage for each spatial partition is
determined by Equation 2. In order to allow flexible sample size to
meet user requirements, we add a sampling factor f in Equation 2 to
vary the sample size. To find out the desired sample size, we may
need to compute the errors between the raw data and multiple sub-
sampled datasets with distinct f values, which is a time-consuming
process. Instead, we provide an error pre-calculation method to
estimate the errors without performing sampling multiple times. For
evaluating the quality of the sampled data, we consider the differ-
ences of mean, variance and entropy values between sampled data
and raw data in each spatial partition as the error metrics.

After scanning through the data once, we can compute the entropy
value for each spatial partition, and map it to a sampling percentage
using Equation 2 with a given f . Thus, we know the count of samples
for each bin k in each partition t (scountkt ) by the multiplication of
the total count of bin k in partition t and the corresponding sampling
percentage. The mean value of the sampled data in partition t then
can be determined as follows:

Meant =
∑

n
k=1(scountkt ×bincentervk)

∑
n
k=1 scountkt

(3)

n is the number of bins determined by the user, bincentervk is the
bin center value for bin k, which can be defined when knowing
the data value range and the number of bins n. By varying the
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Figure 6: An example of an assignment problem. (a) A1, A2, A3,
and A4 represent four agents and T1, T2, T3, and T4 represent four
tasks. One cost value is associated with each agent and task. (b)
An example of a cost matrix. (C) The assignment result for the cost
matrix shown in (b)

f value and using Equation 2 and 3, we can compute the mean
value for each partition for different sample size. The variance
value for each partition can be computed in a similar way and the
entropy value can be computed using Equation 1 when knowing the
probability of samples’ values fall into the bin k in partition t, which
is scountkt/∑

n
k=1 scountkt . After computing the errors between the

raw data and the subsampled data using one of error metrics for all
partitions, we can either select the maximum error or compute the
average error to determine the accuracy level for each f . The user
then chooses an f based on accuracy levels when performing the
sampling procedure.

5 RECOVERING DATA BY SOLVING ASSIGNMENT PROBLEM

In this section, we introduce a novel data recovery approach to
reconstruct the data volume for further qualitative analysis and visu-
alization from a subsampled dataset. We transform our data recovery
problem to an optimal assignment problem [23], so we first briefly
introduce the assignment problem, and then introduce our data re-
covery approach.

5.1 Assignment Problem and Hungarian Algorithm
Suppose there are a number of agents and a number of tasks and we
want to assign the tasks to the agents. An agent can perform any
task with different cost depending on how he/she is familiar with the
task. A minimum cost assignment problem is to exactly assign one
agent to one task and each task is only assigned to one agent such
that the total cost of the assignment is minimized. The Hungarian
algorithm [18] is the most notable approach that solves the problem
in polynomial time. Figure 6a shows an illustration of an assignment
problem which has four agents (A1 - A4) and four tasks (T1 - T4).
The corresponding cost matrix is shown in Figure 6b, and the final
assignment result is shown in Figure 6c. For more details of solving
the Hungarian algorithm please refer to Kuhn and Yaw’s article [18].

5.2 Data Value Assignment
To produce a reconstructed data close to the raw data, we solve
the data recovery problem by applying the solution of a general
assignment problem. The goal of our data recovery is to generate
reconstructed data that have a similar value histogram to that of the
raw data locally and globally. In this section, we introduce how to
transform our data recovery problem to an assignment problem.

From our IGStS sampling approach introduced in Section 4, we
are able to keep sample values after binning and their locations at
the original full-resolution data volume using bitmap indexing. To
reconstruct the full-resolution data volume from the subsampled
data, we assign one value within the whole data value range to each
location where has no data value (denoted as Precover hereafter). To
reduce the problem size, we partition the whole data value range into
a number of groups (bins), and assign bin center values to Precover
points during the reconstruction. This also matches the data structure
of our sampling-based bitmap indexing that one bit vector records
the points belong to the corresponding bin. Therefore, a bin center
value bi can be referred to as the task and a location of Precover can be
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Figure 7: An example of determining the number of agents based
on the value histograms of the subsampled data and the raw data

referred to as the agent to form an assignment problem. To create a
cost matrix, the total number of agents should be the same as the total
number of tasks. In our case, the number of bins is usually smaller
than the number of Precover points, so multiple Precover points are
possible to be assigned by the same bi value. Therefore, when creat-
ing a cost matrix, we duplicate columns multiple times to generate a
square cost matrix. The number of duplication for each bi is deter-
mined by the difference of the bin frequency between the the original
raw data and the sampled data, f reqdi f f (bi), which is defined as
f reqraw(bi)− f reqsampled(bi). The f reqraw(bi) can be stored as a
metadata, which could be a small storage overhead if only the non-
zero bin frequencies are stored in each partition. On the other hand,
we can also estimate the f reqraw(bi) by f reqsampled(bi)/s, s is the
sampling percentage in each region. Figure 7 shows an illustration of
the idea above. The red bars represent f reqsampled(bi), and the blue
bars represent f reqraw(bi). The yellow bar is f reqdi f f (bi) for bin i.
The total number of the Precover points Ntot is defined as follows:

Ntot =
B

∑
i=1

Nassignbi
=

B

∑
i=1

f reqdi f f (bi) (4)

where B is the number of bins, Nassigni is the number of Precover
points to be assigned by value bi, and the size of the cost matrix is
defined as Ntot ×Ntot .

To determine the cost values in the cost matrix, we collect the
samples around each Precover point and estimate the occurrence
frequency of each value bi, and assign a weighted value to the cor-
responding element (Precovery,bi) in the cost matrix. The detail of
creating the cost matrix is introduced in the next section. Our ap-
proach then assigns values to all the Precover points by solving the
assignment problem. In our work, we transform our problem to
a maximum assignment problem. To solve a maximum cost as-
signment problem using Hungarian algorithm,we can replace a cost
value with max(costi)− costi, i = 1,2, · · · ,Ntot ·Ntot . We use dlib
library [15] to solve the assignment problem. Since the performance
of solving assignment problem could be slow if Ntot is large, we
reduce the problem size by partitioning the data space into several
blocks and reconstructing the data block by block. This matches our
IGStS sampling scheme and also allows our recovery process to be
easily parallelized.

5.3 Cost Matrix
To estimate the occurrence frequency of each value bi for a Precover
point, we take the value composition around Precover for reference.
We collect the samples in the neighborhood region of Precover and
count the number of samples’ value belong to bi. The reason is
that each element is usually similar to its neighboring points’ values
especially for the scientific datasets which have smooth data conti-
nuity in general. Through the value composition, we assume a value
has a higher frequency of appearance at a Precover point if the value
appears frequently around Precover. Furthermore, we weight the oc-
currence frequencies by the distance between the neighboring points
and the Precover point. Instead of counting one for each sample, we
weight the count by a Gaussian function centered at the Precover
point. More specifically, the samples next to Precover have higher

weight, and the samples faraway from Precover have lower weight
when adding the weighted count into the corresponding frequency
accumulator (We define the weighted count for bi as wcountbi here-
after). On the other hand, if several points around Precover belong
to bi, it implies that the values close to bi should also have higher
occurrence frequencies than those values distant from bi. Therefore,
we can also add wcounti into the accumulators of the bins close to
bi. For such bin bu, the wcountbi is weighted again by the distance
between bi and bu. The weighted frequencies for a Precover point are
then added to the corresponding elements in the cost matrix.

Each cost value Cbi
j,k (at the jth row and the kth column in the cost

matrix) represents the weighted occurrence frequency of a bin center
bi at location j, which is defined as follows:

Cbi
j,k =

r

∑
m=1

e−
1
2 (

dist( j,vm)
σ

)2
× e−

1
2 (

di f f (bi ,bu)
σ

)2
(5)

Here, vm is the sample point around location j. r is the number of vm
points in the processing domain. dist( j,vm) represents the Euclidean
distance between vm and the point at j. bu is the bin center that vm’s
value belongs to. dist(bi,bu) represents the difference between bin
center bi and bu. σ is the standard deviation which can be defined
by the user. To avoid high computational overhead of Cbi

j,k, we can
determine a threshold for filtering out the sample points distant from
the point at j and another threshold for filtering out the sample points
whose values are much different from bi.

6 COMPARATIVE STUDIES

We perform comparative studies among different data sampling
and recovery schemes to demonstrate the efficacy of the proposed
approaches. In this study, we consider the storage cost, sampling rate
and the quality of the reconstructed data for comparisons. Signal-
to-noise ratio (SNR) is commly used to estimate the quality of the
reconstructed data, and is defined as the ratio of the power of a signal
to the power of the noise in the signal. Higher SNR represents better
quality in the signal. Among different sampling approaches, if a
sampling approach well preserves the information in the original raw
data, it will result in a better quality with a higher SNR value [17].
SNR value is defined as:

SNR =
Psignal

Pnoise
(6)

where the power of noise is calculated by the error between the
original raw data and the reconstructed data. In this work, we use
the logarithmic decibel scale for SNR, SNRdb = 10× log10(SNR).

6.1 Datasets
Four datasets are used in the comparison studies: The Isabel dataset
represents Hurricane Isabel from IEEEVIS 2004 Contest, where
the Pressure field is used. The data resolution is 500×500×100
and the raw data size is 95MB. The Combustion dataset is a simu-
lation of combustion phenomena provided by the Sandia National
Laboratories, where the mixture fraction field is used. The data
resolution is 480×720×120 and the raw data size is 158MB. The
HD(CP)2 dataset is atmospheric simulations over Germany pro-
vided by the 2017 IEEE SciVis Contest, where the humidity field
is used. The data resolution is 1178×1274×300 and the raw data
size is 1.67 GB. The Turbine dataset is generated from a flow simu-
lation, TURBO [5], which will be discussed in the section of In Situ
application study.

6.2 Comparative Studies for IGStS
To demonstrate the efficacy of our IGStS sampling approach using
bitmap indexing, we compare our approach with StRS and AStRS
which are introduced in Section 3.2. For qualitative comparisons, we
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Figure 8: The comparison between our data sampling approach IGStS and two other approaches, AStRS and StRS, for different datasets.
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Figure 9: The comparison between our data recovery approach RCcost and two other approaches, RCnearest and RCmean, for different datasets.

generate a subsampled data from each approach and reconstruct a
full-resolution data volume from the subsampled data. To make a fair
comparison, we apply nearest neighbor algorithm to reconstruct data
instead of our optimized data recovery since StRS is not designed for
preserving the value distribution in a local region. The idea of nearest
neighbor-based recovery is to search for the nearest neighboring
sample around Precover and assign the sample’s value to Precover.
Once the reconstructed data is generated, we compute the SNR value
from the reconstructed data and the ground truth for all approaches,
and then compare the performance of storage cost vs. SNR between
them. To make a fair comparison, all the subsampled data is stored
using bitmap indexing data structure with the same compression
scheme. In addition, the reordering scheme introduced in Section
4.2 and the zlib compression for further storage reduction are used
for all sampling approaches as well. In this experiment, the spatial
partition size used in all approaches is 8× 8× 8, the number of
histogram bins used for generating bitmap indexing is 256. The σ

used in Equation 5 for creating the cost matrix is set to 2.
Figure 8 compares three sampling approaches for the four test

datasets. For our approach, we generate subsampled data with eight
distinct sample sizes by adjusting f in Equation 2. We set f value
to 0.5, 1, 2, 4, 8, 16, 32, and 64. The final sampling percentage for
the whole subsampled data generated from IGStS is taken as the
input sample size for StRS and AStRS, to make a fair comparison.
From our observation, if the sample size is too small to preserve the
characteristics of the raw data in the subsampled data, the quality
(SNR value) of the reconstructed data for all the thee approaches are
similar. However, if the sample size is large enough, our approach
outperforms the other two approaches in terms of SNR value. The
reason is that when increasing the total sample size, it will draw more
samples in those regions with high complexities, which significantly
improves the representatives of the subsampled data in those regions.
On the other hand, although the increase of samples may not be that
significant in those regions with low complexities, the samples could

still be enough to represent such regions. For AStRS and StRS,
increasing the total number of samples will increase samples equally
in each region, so the region with high data complexity can still
be underrepresented, which results in low-quality data recovery in
those regions. Furthermore, when the sampling rate becomes larger
and larger, the SNR values for the three methods will converge,
which can be observed in Figure 8. Overall, our IGStS can generate
subsampled data that provide users more accurate and representative
information of the raw data when exploring or visualizing the data.

6.3 Comparative Studies for Data Recovery
In this section, we show the performance of our data recovery
method proposed in Section 5. In this experiment, we first gen-
erate subsampled data for each test data using the proposed IGStS
approach with eight different sampling rates and then reconstruct
each subsampled data to a full-resolution data volume. The sampling
rates used for this test are the same as the ones we used in Section
6.2. The partition size for sampling procedure is 8×8×8 and the
number of histogram bins for generating bitmap indexes is also set
to 256. In this experiment, we compare our proposed data recovery
approach (denoted as RCcost hereafter) with two approaches. The
first one is a naive approach that assigns the average value of all
sample points in the local region to each Precover point (denoted
as RCmean hereafter). The second one is to apply nearest neighbor
algorithm to reconstruct data (denoted as RCnearest hereafter). For
the RCcost approach in this experiment, we store bin frequencies of
the original raw data for each partition when sampling is performed,
and take this metadata for evaluating the f reqdi f f in Equation 4.
The additional storage overhead for the metadata is shown in Table
1. As shown, the storage costs are all less than 1% of the original
raw data. For all the approaches, we recover data block by block,
and the block size is determined by the one used in the sampling
stage. The σ in Equation 5 is set to 2.

In this experiment, we compute an SNR value from the raw data
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Figure 10: The performance comparison of our IGStS and RCcost approach with different parameter settings. (a) is the comparison for using
different block size. (b) is the comparison for using different σ . (c), (d), and (e) are the comparisons for using different bin size.

Table 1: Additional metadata storage overhead for RCcost .

Isabel Combustion HD(CP)2 Turbine
size (MB) 0.48 1.198 9.4 1.17

% of raw data 0.5% 0.76% 0.56% 0.40%

and the reconstructed data for each recovery approach and compare
their performance by SNR vs. sampling rate. The comparisons
are shown in the upper row in Figure 9. As shown, our approach
RCcost recovers data with smaller error than the approach RCmean
and RCnearest in most of the cases, which evidences the quality of
the reconstructed data is improved. Furthermore, we evaluate the
quality of reconstructed data in terms of the local statistical property
and show the comparison results in the lower row in Figure 9. We
compute the local histogram at each grid point for both raw data and
reconstructed data, and compute the error between two histograms
by the Jensen−Shannon divergence. We then create a histogram for
the error values for all the grid points to evaluate the local statistical
property preserved in the reconstructed data. Figure 9 shows the
comparison results for all the dataset with the smallest sampling rate
used in the previous experiments, which is 1.8% for Isabel, 4% for
Combustion, 2% for HD(Cp)2, and 5.7% for Turbine dataset. As
shown, our RCcost approach recovers samples with smaller errors
of local histograms compared to the approach RCnearest and RCmean,
which evidences the efficacy of RCcost .

6.4 Parameter Study
6.4.1 Block Size for IGStS and RCcost

In this section, we compare different cases using different block
sizes when applying IGStS sampling and RCcost approach for the
Combustion dataset. In this experiment, we set the block size to 4, 8,
and 12. The quality of the reconstructed data is also measured by the
SNR value, sampling rate vs. SNR is compared between all results,
shown in Figure 10a. From the experiment, when the sampling
rate is low, larger block size results in greater SNR values. This is
because using a large block in the sampling procedure can provide
more samples to retain more precise value distribution in each block
when the sampling rate is low. On the contrary, the case with a
smaller block size has a greater SNR value when the sampling rate
is higher. In general, using a smaller block for storing samples can
reduce the data complexity in the block. Therefore if the sample size
is enough to preserve the value distribution in the block, this results
in higher accuracy of estimating the bin frequencies of the raw data
in the case of the bin frequencies are not stored as a metadata. Thus
the RCcost can recover samples closer to the raw data.

6.4.2 σ for RCcost data recovery
In this section, we show different cases using different σ when ap-
plying the RCcost data recovery approach. We set the σ value to 1,
2, 3, and 4 to gather results for the Isabel data. The σ value used in
Equation 5 is to determine the contribution of a point on its neigh-
boring points when creating a weighted histogram for estimating
the value occurrence probabilities. More specifically, when setting

σ to 1, only samples close to the Precover point can contribute large
weights for the weighted histogram. On the other hand, when setting
σ to 4, points far away from the Precover point can also contribute
large weights. In this experiment, we also computed the SNR value
from the reconstructed data and the raw data, and compared the
SNR vs. sampling rate shown in Figure 10b. From the figures, we
observe that cases with large σ have better quality results when the
sampling rate is smaller. The reason is that the neighboring samples
close to the Precover point could be too few to provide sufficient
information for well estimating the occurrence probability, so we
prefer to increase the weight for the samples that are far away to
enhance the information. On the contrary, when the sampling rate
is large, we merely consider the contributions from the neighboring
samples close to the Precover points.

6.4.3 Bin Size for IGStS and RCcost

In this work, the stratified sampling is applied to preserve the value
distribution of the raw data, so the data points are categorized by
their values first. Therefore, the value range (or the bin size) has to
be defined before performing sampling. In this section, we conduct
an experiment to examine the impact of the bin size to our works.
We use 64, 128, 256, 512, and 1024 bins for creating the sampling-
based bitmap for the Combustion dataset using IGStS. From Figure
10c, we observe that the bin size has little impact to our work when
using smaller sampling rate, while it determines the quality of the
subsampled data when larger sampling rates are applied. Although
it provides better quality of the subsampled data when using larger
bin size, the data size is also increased because more bit vectors are
stored in the bitmap indexing. Figure 10d, shows the growth of the
data size when the sampling rate increases, and Figure 10e shows
the comparison of SNR vs. storage cost. From the observations, we
recommend the user to set smaller bin size for the case of limited
storage requirement; for the case of demanding high quality, larger
bin size is preferred.

7 VISUAL ANALYSIS

In this section, we provide visual comparisons between our approach
and other sampling and recovery approaches. We apply two different
sampling approaches (IGStS, and AStRS) to generate the subsam-
pled data and we reconstruct each sample data by applying RCcost ,
RCnearest , and RCmean approaches. For each dataset, the parameters
used for sampling and reconstruction approaches are the same as
the ones we used in the experiment in Section 6. We first visualize
the reconstructed field by volume rendering which provides the in-
formation of the entire volume. Second, we compare the isosurface
rendering results which provides a specific value information across
the entire data. In this visual analysis, we use Paraview [12] to
visualize all the rendering results.

7.1 Volume Rendering
We first apply volume rendering to visually compare the recon-
structed data between our approaches and others. Figure 11 shows
the volume rendering of the data generated from HD(CP)2 project



(a) IGStS + RCmean (38.3 MB) (b) AStS + RCnearest (34.7 MB) (c) IGStS + RCcost (37.0 MB) (d) Ground Truth (1.67 GB)

Figure 11: Visual comparisons for the HD(CP)2 dataset. The figures in the first row are the rendered images for the reconstructed data. The
figures in the second row are the error images that show the differences between the raw data and the reconstructed data.

(a) AStRS + RCnearest (b) IGStS + RCmean (c) IGStS + RCcost (d) ground truth

Figure 12: Visual comparisons of isosurfaces 0.42 of Mixture Fraction of Combustion data. The sampling percentage for (a) to (c) are all set to
0.16. The isosurfaces are extracted from the reconstructed fields which are generated from different sampling and recovery approaches.

which is provided by VISContest 2017. Figure 11a shows the render-
ing result using our IGStS sampling and RCmean recovery approach.
Figure 11b shows the rendering result using AStRS sampling and our
RCnearest recovery approach. Figure 11c is for the IGStS sampling
and RCcost approach, both of which are our proposed approaches,
and Figure 11d shows the ground truth. The rendered images for
the reconstructed data are shown in the first row, and the error im-
ages between the reconstructed data and the raw data are shown in
the second row. For the rendered image, we zoom into the region
with higher data complexity to demonstrate the performance of the
proposed approach. Figure 11a shows the worst rendering result
compared to others. We see clear checker-box-like patterns in the
rendering, and most of the detail information is missing as well. Fig-
ure 11b shows a better quality of rendering compared to Figure 11a.
However, some detailed information is missing in the region with
higher data complexity. Compared to Figure 11b, our result shown
in Figure 11c preserves more detailed information and is closer to
the ground truth. In addition, we provide clearer comparisons us-
ing error images shown in the second row which are generated by
computing the L1−norm distance between the reconstructed data
and the raw data. To have a fair comparison, all the error images
use the same color mapping, and the error value ranges are all fixed
between 0 to 0.001, where most errors for the three test approaches
are resided (the raw data value range is [2.4/times10−6,0.0146]).
As shown in the error images, the other two approaches have larger
errors than ours result, especially in the zoom-in regions. Overall,
the rendering image generated by our approaches is closest to the
ground truth and the sample data size is only about 2.2% of the raw
data size.

7.2 Isosurface Rendering

In this section, we apply isosurface rendering to visually compare
the isosurface extracted from the reconstructed data between our
approaches and others. Figure 12 shows isosurface rendering of the

mixture fraction variable of the Combustion dataset. The mixture
fraction variable represents the fraction of mass in the fuel stream,
value 1 represents pure fuel and value 0 represents pure oxidizer. We
set the isovalue to 0.42, which is a representation of the flame [1].
The sampling percentages used for Figure 12a to Figure 12c are all
0.16. As shown, Figure 12a has the worst rendering result compared
to others. The entire surface is jagged and unsmooth, which implies
the low-quality of reconstructed data generated from the AStRS
sampling. Figure 12b shows better isosurface rendering compared
to Figure 12a. However, when we zoom in to the region circled by
red, the structure is broken and the details disappear. Compared to
12b, the structure is maintained and the surface is smoother from
RCcost recovery, which can be seen in Figure 12c.

7.3 Surface Rendering

In this section, we visually compare the surface rendering of the
Turbine dataset generated from TURBO simulations [5]. Figure
13 shows the comparisons between different approaches, where the
Pressure value is used. As shown, our approach produces a higher
quality reconstruction with smaller storage overhead shown in Figure
13c compared to the other methods. The rendering results generated
from the other two approaches show more artifacts highlighted by
black circles in Figure 13a and 13b.

From the visualizations shown in this section, we demonstrate
that our sampling approach can improve AStRS approach to better
representing the raw data. We also prove that a proper data recovery
approach is required to provide a qualitative post-hoc analysis and
visualization from the subsampled dataset. In the next section, we
will present the performance of the sampling approaches in the in
situ simulations and the performance of the data recovery.



(a) AStRS + RCcost (15.86 MB) (b) IGStS + RCmean (14.94 MB) (c) IGStS + RCcost (14.94 MB) (d) ground truth (about 290 MB)

Figure 13: Visual comparisons of Pressure field of Turbine dataset.

Table 2: In situ timings of the proposed sampling method.

Simulation Simulation raw
I/O

In situ
sampling

In situ I/O

169.27 mins 3.67 mins 2.273 mins 1.45 mins

8 PERFORMANCE STUDY OF IN SITU SAMPLING AND OFF-
LINE DATA RECOVERY

8.1 In situ Sampling Performance

To demonstrate the in situ performance, we applied IGStS to a large
scale flow simulation, TURBO [5], for data summarization. TURBO
was developed at NASA and is used for studying the flow behavior
in jet engine compressors. The simulation domain consists of a rotor
with 36 blade passages and the spatial resolution of each passage is
151×71×56. The simulation outputs 5 variables in plot3d format
and they are density, momentum in x direction, momentum in y
direction, momentum in z direction, and energy.

The in situ experiment was done in a cluster Oakley [3], which
contains 694 nodes with Intel Xeon x5650 CPUs (12 cores per
node), and 48 GB of memory per node. The simulation was run
for 1800 time steps and the in situ call was made at every 10th

time step. This required us to summarize data of 180 time steps.
The in situ performance of our method is depicted in Table 2. It
is observed that the in situ sampling takes significantly less time
compared to the simulation run and is only a small fraction. Hence,
our method does not overburden the simulation run. Furthermore,
in our experiment, we have summarized all 5 variables produced
by the simulation which will allow recovery of any user queried
variable in the post-analysis phase. The raw data size for the rotor
is 690 MB per time step, i.e., 124.2 GB for 180 time steps. In the
absence of in situ summarization, we would have to store 124.2 GB
data into disks for post-hoc analysis. However, using our in situ
data summarization, the size of the output is reduced to only 19.79
GB which is much smaller compared to the raw data. Therefore,
from the above discussion, it is evident that the proposed method is
suitable for an in situ environment and can be a practical solution for
efficient large scale data reduction which preserves important data
properties and is able to recover data with smaller errors.

8.2 Off-Line Data Recovery Performance

Here we discuss the computation time of our RCcost recovery ap-
proach. In this work, we apply the Hungarian algorithm to solve our
data reconstruction problem. Although the time complexity of the
Hungarian algorithm was improved by Munkres [23] that achieved
O(n3) time complexity, still, the computation time can be slow when
the number of tasks n is significantly large. To avoid this problem,
we reconstruct data block by block to reduce the problem size and
perform the recovery process in parallel using nVidia CUDA and
OpenMP. To evaluate the performance, we ran the recovery algo-
rithm on a machine with an Intel Core i7-4770 CPU and 16GB of
system memory, and an nVidia GeForce GTX 660 GPU with 2GB
of texture memory. In the test, we stored the subsampled data using
the compressed bitmap indexing with the reordering scheme, and
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Figure 14: Performance comparisons for RCcost . Left: computation
time for each block. Right: computation time vs. block size.

the σ used in RCcost data recovery was set to 2. The performance
test result of RCcost is shown in Figure 14. As shown in the left
figure, the recovery computation time for each block is less than
0.008 second for all the dataset. When setting the block size to 83,
the total number of blocks in the test for Isabel (500×500×100),
Combustion (480× 720× 120), HD(CP)2 (589× 637× 150), and
Turbine dataset (151×71×56×36) is 51597, 81000, 112480, and
43092 respectively. When the sampling rate is large, the number of
points to be recovered is little and the size of the cost matrix is small,
which results in less recovery computation time. From the figure,
the recovery computation overhead for the Combustion dataset is
relative small. This is because the dataset has many homogeneous
blocks where only one sample is stored, and we simply assign the
stored sample’s value to all the points, without performing the Hun-
garian algorithm. Furthermore, we compare the computation time
of RCcost vs. block size for the Isabel and Combustion dataset. As
we can see, the computation time grows rapidly when using a larger
block size in the recovery procedure. Therefore, we recommend to
set block size to 103 or smaller for data recover using RCcost .

9 CONCLUSION AND FUTURE WORK

In this work, we proposed two approaches to tackle the potential
limitations for data analysis and visualization when using bitmap
indexing-based data representation. We first introduce a new infor-
mation guided stratified sampling (IGStS) technique to adaptively
determine sample size for each spatial partition according to its infor-
mation entropy, and then draw samples evenly from each partition’s
value range to preserve the characteristics of the raw data. Through
this adaptive sampling approach, the proposed bitmap indexing-
based data representation allows superior quality of data analysis and
visualization while keeping the storage overhead low. Furthermore,
we proposed an optimized data recovery algorithm that incorporates
the sample’s spatial information and value distribution, preserved
in each spatial partition. We transform the data recovery problem
to the optimal assignment problem and solve it by the Hungarian
algorithm. Our experimental results showed the quantitative and
visual efficacy of our two approaches. The in situ application study
also demonstrated that our sampling approach is applicable in an
in situ environment. Currently, we use regular spatial partitioning
for data sampling and recovery. In the future, we wish to study the
influence of different irregular partitioning schemes, hoping that it



will allow us to preserve the value distribution of the raw data more
accurately leading to further improvement in quality during data
reconstruction.
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[24] C. Petz, K. Pöthkow, and H.-C. Hege. Probabilistic local features in
uncertain vector fields with spatial correlation. Computer Graphics
Forum, 31(3):1045 – 1054, 2012.

[25] C. E. Shannon. Prediction and entropy of printed english. Bell Systems
Technical Journal, 30:50–64, 1951.

[26] Y. Su, G. Agrawal, and J. Woodring. Indexing and parallel query
processing support for visualizing climate datasets. In ICPP, pp. 249–
258. IEEE Computer Society, 2012.

[27] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and
J. Ahrens. Taming massive distributed datasets: Data sampling using
bitmap indices. In Proceedings of the 22nd International Symposium
on High-performance Parallel and Distributed Computing, HPDC ’13,
pp. 13–24. ACM, New York, NY, USA, 2013.

[28] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and
J. Ahrens. Effective and efficient data sampling using bitmap indices.
Cluster Computing, pp. 1–20, 2014. doi: 10.1007/s10586-014-0360-5

[29] Y. Su, Y. Wang, and G. Agrawal. In-situ bitmaps generation and
efficient data analysis based on bitmaps. In Proceedings of the 24th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’15, pp. 61–72. ACM, New York, NY, USA, 2015.

[30] D. Thompson, J. Levine, J. Bennett, P.-T. Bremer, A. Gyulassy, V. Pas-
cucci, and P. Pebay. Analysis of large-scale scalar data using hixels. In
Proceedings of the 2011 IEEE Symposium on Large-Scale Data Analy-
sis and Visualization (LDAV), pp. 23–30, 2011. doi: 10.1109/LDAV.
2011.6092313

[31] K. C. Wang, K. Lu, T. H. Wei, N. Shareef, and H. W. Shen. Statistical
visualization and analysis of large data using a value-based spatial
distribution. In 2017 IEEE Pacific Visualization Symposium (PacificVis),
pp. 161–170, April 2017. doi: 10.1109/PACIFICVIS.2017.8031590

[32] T. Wei, C. Chen, J. Woodring, H. Zhang, and H. Shen. Efficient
distribution-based feature search in multi-field datasets. In 2017 IEEE
Pacific Visualization Symposium, PacificVis 2017, Seoul, South Korea,
April 18-21, 2017, pp. 121–130, 2017. doi: 10.1109/PACIFICVIS.
2017.8031586

[33] T.-H. Wei, C.-M. Chen, and A. Biswas. Efficient local histogram
searching via bitmap indexing. In Computer Graphics Forum, vol. 34,
pp. 81–90, 2015.

[34] J. Woodring, J. P. Ahrens, J. Figg, J. Wendelberger, S. Habib, and
K. Heitmann. In-situ sampling of a large-scale particle simulation
for interactive visualization and analysis. Comput. Graph. Forum,
30(3):1151–1160, 2011.

[35] J. Woodring, S. M. Mniszewski, C. M. Brislawn, D. E. DeMarle, and
J. P. Ahrens. Revisiting wavelet compression for large-scale climate
data using JPEG 2000 and ensuring data precision. In IEEE Symposium
on Large Data Analysis and Visualization, LDAV 2011, Providence,
Rhode Island, USA, 23-24 October, 2011, pp. 31–38, 2011. doi: 10.
1109/LDAV.2011.6092314

[36] K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for
faster search operations. In SSDBM, pp. 99–108, 2002.


