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ABSTRACT

Applications of Implicit Neural Representations (INRs) have
emerged as a promising deep learning approach for compactly rep-
resenting large volumetric datasets. These models can act as sur-
rogates for volume data, enabling efficient storage and on-demand
reconstruction via model predictions. However, conventional de-
terministic INRs only provide value predictions without insights
into the model’s prediction uncertainty or the impact of inherent
noisiness in the data. This limitation can lead to unreliable data
interpretation and visualization due to prediction inaccuracies in the
reconstructed volume. Identifying erroneous results extracted from
model-predicted data may be infeasible, as raw data may be unavail-
able due to its large size. To address this challenge, we introduce
REV-INR, Regularized Evidential Implicit Neural Representation,
which learns to predict data values accurately along with the associ-
ated coordinate-level data uncertainty and model uncertainty using
only a single forward pass of the trained REV-INR during inference.
By comprehensively comparing and contrasting REV-INR with exist-
ing well-established deep uncertainty estimation methods, we show
that REV-INR achieves the best volume reconstruction quality with
robust data (aleatoric) and model (epistemic) uncertainty estimates
using the fastest inference time. Consequently, we demonstrate that
REV-INR facilitates assessment of the reliability and trustworthi-
ness of the extracted isosurfaces and volume visualization results,
enabling analyses to be solely driven by model-predicted data.

Index Terms: Computing methodologies—Machine learn-
ing; Human-centered computing—Visualization; Mathematics of
computing—Probability and statistics; Computing methodologies—
Computer graphics

1 INTRODUCTION

Implicit neural representations (INRs) have gained wide popular-
ity in the visualization community as compact surrogates for large
volumetric datasets [13–15, 28, 41]. INRs effectively learn complex
scalar fields and enable on-demand volume prediction, allowing
downstream tasks such as isosurface extraction and volume render-
ing to be performed directly on INR-predicted data. Although INRs
demonstrate high-quality reconstruction, prediction inaccuracies are
inevitable. In real-world scenarios, where raw high-resolution data
may not be stored due to its size [9,24,50], error estimation becomes
infeasible, making it difficult to assess the quality, reliability, and
trustworthiness of the results. Most INR-based works in scientific vi-
sualization [13–15, 28, 41] employ deterministic models that predict
only values, without quantifying uncertainty. To address this limi-
tation, recent researchers have started exploring uncertainty-aware
INRs that predict both data values and associated model-level uncer-
tainties [9, 34, 35, 50]. So far, these efforts primarily examine model
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(epistemic) uncertainty, while the quantification, application, and
usability of data-level (aleatoric) uncertainty has not been explored
yet. For generating high-quality, reliable, and trustworthy visual-
izations, comprehensive treatment of both epistemic and aleatoric
uncertainties is essential [21]. Moreover, since uncertainty is an
inherent model property that can be estimated without raw data,
it provides a powerful mechanism for producing informative and
trustworthy results in scientific applications.

A widely adopted approach to estimate uncertainty in INRs is
to use an ensemble of INRs and treat their prediction variance as
the uncertainty estimate. While such deep ensembles [25] are often
found to be very powerful [12, 30, 34, 52], their strength comes at
the cost of excessively high training times and increased storage re-
quirements, since multiple models must be trained and stored [9,34].
Therefore, in this work, we focus on developing single-model-based
uncertainty-aware INRs. To the best of our knowledge, this is the
first work that quantify and study both model-level (epistemic) and
data-level (aleatoric) uncertainty estimates using a single INR, and
demonstrates their interpretation, usability, and applicability in INR-
driven volume visualization tasks. Model uncertainty helps domain
experts identify regions where the INR is over- or under-confident in
its predictions, while data uncertainty highlights the irreducible noise
(stochasticity) in the data and potential regions where such noise may
affect analysis results and visualizations. Thus, a clear separation,
estimation, and visual exploration of these two fundamental uncer-
tainty types are essential for effectively evaluating INR reliability
and understanding the influence of inherent data noise [21].

To comprehensively quantify and evaluate the significance of
epistemic and aleatoric uncertainties in volume visualization, we
propose REV-INR, a regularized evidential implicit neural repre-
sentation (INR) that produces high-quality data predictions along
with reliable epistemic and aleatoric uncertainties — all within a
single forward pass at inference time. By employing evidential learn-
ing [11], REV-INR learns the parameters of a higher-order posterior
distribution, thereby providing closed-form solutions for predicting
data values together with both types of uncertainty. To produce in-
terpretable uncertainty estimates, we propose two novel uncertainty
regularization techniques for REV-INR. To compare REV-INR with
existing single-model-based approaches, we develop two additional
uncertainty-aware INRs. The first, referred to as MCD-INR, is based
on the Monte Carlo Dropout approach [10, 34, 50]. Since conven-
tional MCD-INR only estimates epistemic uncertainty, we extend
MCD-INR to also capture data (aleatoric) uncertainty. The second
model is adapted from RMDSRN [50] which is also designed to
predict only epistemic uncertainty, we build a new INR, consisting
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of a shared encoder and multiple decoders, similar to RMDSRN, to
predict both epistemic and aleatoric uncertainties and refer to this
new regularized model as RMD-INR.

To enable reliable and robust analysis of volume data using INR
predictions, we comprehensively evaluate REV-INR against MCD-
INR and RMD-INR. We first assess reconstruction quality and the ac-
curacy of volume visualization results. Next, we employ uncertainty-
aware isosurface visualization [5, 32] to interpret and assess the
uncertainty estimates. By analyzing isosurface structures and their
topology, experts can better understand scalar field topology [8, 44].
Thus, it is essential that INR-generated data-driven isosurfaces pre-
serve true structures and enable the identification of regions where
the INR is under- or over-confident and prone to errors. We further
evaluate the interpretability and usability of both uncertainty types
by examining their correlations with prediction error, local data
variance, and interpolation-based errors. Additionally, we provide
results from a deterministic INR for completeness. Our comprehen-
sive evaluations show that REV-INR outperforms MCD-INR and
RMD-INR, achieving superior reconstruction quality, visualization
results, reliable uncertainty estimates, and the fastest inference times.
Hence, our contributions are as follows:

1. We propose REV-INR, a new uncertainty-aware Regularized
Evidential INR with novel uncertainty regularization methods
that enables efficient learning of large volumetric data while
delivering fast, high-quality inference and fine-grained predic-
tion quality assessment through coordinate-level epistemic and
aleatoric uncertainty estimates.

2. We (a) extend Monte Carlo Dropout-INR, and (b) build another
uncertain SRN, RMD-INR, adapted from RMDSRN, enabling
the estimation of aleatoric (data) uncertainty in both models in
addition to epistemic uncertainty.

3. We extensively compare and contrast REV-INR with MCD-
INR, RMD-INR, and state-of-the-art compression methods
to demonstrate its superiority in fast volume reconstruction,
reliable and meaningful epistemic and aleatoric uncertainty
estimation, and trustworthy, accurate visualization generation.

2 RELATED WORKS

2.1 Techniques of Uncertain Volume Visualization
Visualization of volumetric data with uncertainty is an important vi-
sualization task. A typical representation of such volumetric data is
in the form of per-point probability distribution. Liu et al. use flick-
ering to represent uncertainty in such volume data [27]. A statistical
volume visualization framework is proposed in [33]. Athawale et al.
investigate uncertainty visualization in volume rendering using non-
parametric models [4]. Pöthkow et al. develop a method to compute
the level-crossing probability, which is further refined to determine
the probability for each cell [31, 32]. Whitaker et al. [47] examine
uncertainty visualization in ensembles of contours. Athawale et al.
extensively explore uncertainty in isosurface extraction [2, 3].

2.2 Deep Learning for Scalar Field Visualization
Deep learning methods for creating compact representations of scalar
field data have been extensively explored in recent years [15, 28, 46].
The use of volume-rendered images for scalar data analysis has
been demonstrated by Hong et al. [19], He et al. [18], and Berger
et al. [7]. For domain-knowledge-aware volume data compression,
latent space techniques have been introduced in [36]. Advances
in generating high-resolution spatiotemporal volumes have been
reported in [13,16,49]. Deep neural networks (DNNs) have also been
employed as surrogates for exploring parameter spaces in ensemble
data [18,38]. Weiss et al. [45] perform isosurface visualization using
DNNs, while Han et al. [17] utilize deep learning to enhance the
probabilistic marching cubes algorithm for isosurface extraction.

Recently, researchers have begun investigating epistemic (model)
uncertainty in visual analysis. Model uncertainty in CNN-based
view synthesis has been studied in [9], while epistemic uncertainty
in super-resolution [37] and parameter space exploration [35] has
also been explored. The impacts of epistemic uncertainty on INR-
based volume visualization are analyzed in [34]. Uncertainty-aware
vector data modeling has been addressed in [24]. Uncertain-INR has
been applied to represent uncertainty in CT data [42] and remote
sensing images [51]. Furthermore, an uncertainty-aware regularized
multi-decoder scene representation network (RMDSRN) for scalar
data visualization has been proposed in [50].

Our survey reveals that existing research has only focused on
epistemic (model) uncertainty. However, a detailed investigation of
data (aleatoric) uncertainty, as well as a comprehensive framework
for jointly estimating both uncertainties in the context of volume
modeling, remains unexplored — a gap that we aim to address.

3 UNCERTAINTY IN NEURAL NETWORKS

Uncertainty refers to the degree of confidence (or lack thereof) in the
results, predictions, or visualizations made by a model. It captures
the idea that our conclusions from model-generated results are not
always absolute but are subject to variability and errors in predictions.
In the domain of predictive data analytics, uncertainty can be broadly
classified into two types: (1) Epistemic (model) uncertainty, and (2)
Aleatoric (data) uncertainty. Studying both types of uncertainty is
imperative to generate meaningful, trustworthy, and reliable visual
analysis results [21].

Epistemic (Model) Uncertainty. Epistemic uncertainty, also
known as model uncertainty, represents a model’s imperfections or
limitations regarding its predicted values. It quantifies how confi-
dent the model is in the correctness of its predictions and provides a
mechanism for users to measure the limitations of the model’s knowl-
edge during inference. Recently, the visualization community has
started investigating this epistemic uncertainty and its significance
in volume visualization tasks [34, 50].

Aleatoric (Data) Uncertainty. On the other hand, the importance
of Aleatoric (data) uncertainty in volume visualization tasks is yet
to be studied. Aleatoric uncertainty captures the inherent variance
or noise in the data. It represents the stochastic nature of the data
and is often attributed to the limitation of data generation process.
Aleatoric uncertainty can be of two types: (1) Homoscedastic and
(2) Heteroscedastic [21]. In homoscedastic uncertainty, the noise for
each input data point is considered constant, whereas the noise in
heteroscedastic aleatoric uncertainty varies. Note that, in this work,
the estimated aleatoric uncertainties are heteroscedastic since the
amount of noise varies across the volume spatially.

3.1 Uncertainty in INR-based Volume Modeling
This work proposes using INRs to represent large volumetric datasets
in a compact format, enabling downstream analysis and visualization
to be performed solely on INR-reconstructed data without requiring
access to the ground truth volume. To build trust in INR-predicted
data and produce reliable visualization results, we advocate the
use of uncertainty-aware INRs over the conventional deterministic
INRs. A key advantage of uncertainty-aware INRs is their ability to
convey uncertainty information in analysis and visualization results.
For example, when visualizing isosurfaces, uncertainties can help
recover the true shape and highlight potentially erroneous regions.
Similarly, in volume rendering, uncertainty can be quantified and
conveyed to domain scientists to support informed decision-making.

Our proposed REV-INR not only predicts data values for given
coordinates but also learns its own prediction uncertainty and the
inherent noisiness of the volume data. The model’s prediction un-
certainty, or epistemic uncertainty, quantifies its confidence in the
accuracy of the predicted values. Since the ground truth data is not
available, computation of the true error is infeasible. However, the
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(a) Architecture of the proposed REV-INR. (b) Architecture of MCD-INR. (c) Architecture of RMD-INR.

Figure 1: Schematic architecture of the proposed REV-INR, MCD-INR, and RMD-INR. The proposed REV-INR is trained to predict the
parameters of an evidential distribution, modeling a higher-order probability distribution.

epistemic uncertainty can potentially serve as a proxy for the true
error, helping to build trust and improve interpretability. Alongside,
the learned aleatoric uncertainty reflects inherent noisiness in the
data. This noisiness may arise from (a) stochasticity of the scientific
simulation that generates the data, manifested as varying degrees
of local variance in the scalar field or (b) from interpolation errors
introduced during down-sampling and up-sampling operations of
the volume. While down-sampling helps reduce data size, during
rendering the data are often up-sampled, and this transformation
inevitably introduces interpolation errors. Our goal is for REV-
INR’s learned aleatoric uncertainty to correlate with such noise and
error sources, allowing their impact on visualization results to be
effectively estimated.

4 UNCERTAINTY-AWARE INRS FOR RELIABLE VOLUME
DATA MODELING AND VISUALIZATION

4.1 Implicit Neural Representation (INR)

Recent research shows that for coordinate-based datasets, INRs with
periodic activation functions efficiently learn the mapping from a
given input coordinate to the output data value space [40]. The
visualization community has proposed several variations of such
networks to address several scientific data modeling [14, 28, 41].
The state-of-the-art results obtained from these deterministic INRs
have motivated us to develop REV-INR for efficiently learning
volume data representations and enabling reliable and trustworthy
uncertainty-aware volume data visualization, utilizing both aleatoric
and epistemic uncertainties. Our base deterministic INR follows a
residual SIREN architecture as suggested in [28]. The INR takes
the 3D coordinates as inputs and outputs the corresponding scalar
values. Therefore, the network learns a function F(ψ) : R3 7→ R,
where ψ denotes the learnable parameters of the INR.

4.2 Proposed Regularized Evidential INR (REV-INR)

Construction of a Regularized Evidential Implicit Neural Network
(REV-INR) from a base residual INR requires minimal architectural
modification, essentially augmenting the final decoder layer with
four neurons. The primary novelty lies in the learning algorithm
where REV-INR uses an evidential learning scheme [11] to estimate
data values as well as three additional higher-order distribution pa-
rameters, which can then be conveniently used to estimate per-point
epistemic and aleatoric uncertainty estimates as a closed-form so-
lution. Therefore, REV-INR has four output neurons at its decoder
layer as seen from Fig. 1a. To learn REV-INR, we employ the evi-
dential learning scheme proposed in [1]. It is assumed that individual
data values at grid points are drawn i.i.d. from Gaussian distribu-
tions with unknown mean (µ) and variance (σ2), which need to be
learned. To learn these parameters, an evidential prior is placed on
each of these variables, a Gaussian prior for the unknown mean (µ)
and Inverse-Gamma prior for the unknown variance (σ2). The learn-
ing algorithm aims to approximates the true posterior distribution,

z(µ,σ2). Therefor the formulation is as follows:

µ ∼ N (v,σ2
γ
−1), σ

2 ∼ Γ
−1(α,β ) (1)

where Γ() is the gamma function, Q = (v,γ,α,β ) and v ∈ R, γ > 0,
α > 1, β > 0. Amini et al. in [1] show that the approximate posterior
distribution comes out to be the Gaussian conjugate prior, which is
the Normal Inverse-Gamma (NIG) distribution and the posterior can
be expressed using the four parameters Q = (v,γ,α,β ) where the
posterior NIG distribution function is represented as:

p(µ,σ2 | v,γ,α,β ) =
β α

√
γ

Γ(α)
√

2πσ 2

(
1

σ 2

)α+1
exp

{
−2β+γ(v−µ)2

2σ 2

}
(2)

From Equation 2, we observe that this NIG distribution has four
parameters Q = (v,γ,α,β ). These four parameters are learned per
grid point of the volume data so that coordinate-level value and both
data and model uncertainty estimation will be possible.

4.2.1 Value Prediction and Uncertainty Estimation

A key benefit of the proposed REV-INR is that, after training, both
the estimation of uncertainty values and the prediction of data values
can be achieved in a single forward pass, making inference highly
efficient and thereby accelerating volume reconstruction. Using the
NIG distribution parameters learned by REV-INR, we compute the
predicted value and its associated uncertainty estimates at each grid
point using the following closed-form expressions [1]:

E[µ] = v, AU =
β

α −1
, EU =

β

γ(α −1)

where E[µ] denotes the predicted expected scalar value, AU rep-
resents the aleatoric uncertainty (E[σ2]), and EU represents the
epistemic uncertainty (Var[µ]). Note that, AU in the context of vol-
ume data, models the inherent data value variance per grid point
whereas the EU captures the REV-INR’s prediction variability.

4.2.2 Loss Functions

From Fig. 1a, we observe that construction of REV-INR from a
base INR requires modification in the last decoder layer to add
four neurons so that it can learn to predict the four parameters of
the posterior NIG distribution. To learn this evidential distribution
parameters, we propose to use a KL-divergence loss along with a
regularizer proposed in [1]. We construct a target NIG distribution
which represents low uncertainty when prediction is accurate. Then
we minimize the KL-divergence between this target NIG distribution
and the predicted NIG distribution by REV-INR. Besides this, we
also incorporate a regularization term which applies an incorrect evi-
dence penalty to minimize evidence on incorrect predictions [1]. If
LKL denote the KL-divergence loss and LReg denotes the evidence
regularization term, then the complete evidential loss, LEV , can be
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written as follows:

LEV = LKL +δ ·LReg

LKL = DKL
(
NIG(v,γ,α,β ) ∥ NIG(y,γt ,αt ,βt)

)
LReg = |y− v| · (2γ +α)

where NIG(v,γ,α,β ) and NIG(y,γt ,αt ,βt) represent the predicted
and target NIG distributions respectively, y denotes the true data
value, and δ is a weight for the evidence regularization term and we
set δ = 0.1 empirically for all our experiments. Since we want a high
reconstruction quality along with meaningful uncertainty estimates,
we incorporate the conventional mean squared error loss (LMSE )
with the evidential loss. Hence our loss function becomes:

L = LMSE +λ1 ·LEV

where λ1 is the weight of evidential loss component to achieve a
balanced and stable training loss function for REV-INR.

4.2.3 Regularization of REV-INR
Training REV-INR using the above loss function (L ) results in a
stable INR model that yields high reconstruction quality while also
enabling per-point epistemic and aleatoric uncertainty quantification.
Epistemic uncertainty (EU) reflects REV-INR’s confidence in the
accuracy of the predicted data, whereas aleatoric uncertainty (AU)
captures the inherent data noisiness. Both types of uncertainty can
play a crucial role when visualization results are generated using
REV-INR predictions, as incorporating uncertainty information al-
lows domain experts to better interpret the results and make informed
and reliable decisions. However, as prior research has shown [50],
such predicted uncertainty values—representing either model vari-
ance or data variance—may be over- or under-confident, potentially
leading to misleading interpretations. Therefore, proper calibration
is necessary to produce interpretable uncertainty estimates. We ad-
dress this challenge by formulating novel regularization methods
for both EU and AU . Unlike typical post-training calibration ap-
proaches, where predicted uncertainty values are adjusted to align
with prediction error [50], we perform calibration during training
itself. Specifically, we introduce novel regularization terms into our
loss function that directly constrain EU and AU , thereby yielding
interpretable and reliable uncertainty estimates.

Epistemic Uncertainty Regularization. Since EU represents
REV-INR’s confidence in the accuracy of the predicted data values, it
is expected to correlate with the prediction error. However, because
visual analysis relies solely on REV-INR–generated data, where
ground-truth values are unavailable, direct estimation of the true
error is infeasible. In this context, EU can serve as a potential proxy
for the error values [50]. Therefore, it is appropriate to regularize
the raw EU values against the prediction error during training. We
achieve this by introducing a correlation loss component between
the predicted EU values and the corresponding true error values.
This is feasible because, during training, we have access to the raw
data and can compute the actual error. Hence, our EU regularization
loss (LEU ) is defined as follows:

LEU = 1−ρ(EU,ξ )

where ρ(EU,ξ ) denotes the Pearson correlation between the pre-
diction error (ξ ) and EU . Note that when EU and ξ are positively
correlated, LEU is low, whereas if they are negatively correlated,
LEU yields higher loss. This loss component encourages REV-INR
to produce EU that are aligned with the prediction error.

Aleatoric Uncertainty Regularization. AU captures the inherent
noisiness of the volume at each grid point. In volumetric datasets,
such noise can arise from different sources and may be interpreted
in multiple ways. During training, the proposed REV-INR learns a

continuous representation of the scalar function so that, given any
3D coordinate as input, it can predict the corresponding scalar value.
While learning this scalar function, REV-INR also models per-point
noise in the form of AU . Consequently, homogeneous regions of
the volume are expected to contain less noise compared to regions
where scalar values change rapidly or where edges exist. Therefore,
AU should faithfully represent such variations. Identification of
homogeneous regions or rapidly changing regions can be achieved
by computing per-grid-point gradient values within a small local
neighborhood. Gradient magnitude is an inherent property of the
data and serves as an indicator of regions where high AU is likely
to coincide. To regularize REV-INR-predicted AU , we therefore
correlate AU values with local gradient magnitudes. Our hypothesis
is that this regularization leads to more meaningful AU estimates,
which in turn can serve as a reliable proxy for the inherent noisiness
of volumetric data. To demonstrate the validity and usefulness of
the learned AU values, we later show that these regularized AU
estimates exhibit high correlation with both the local data variance
and interpolation-based inaccuracies that can arise when volume
data are down-sampled and subsequently up-sampled for rendering.
Hence, the AU regularization loss (LAU ) is defined as follows:

LAU = 1−ρ(AU,∇ f (·))

where ρ(AU,∇ f (·)) denotes the Pearson correlation between the
gradient magnitude (∇ f (·)) and AU , with f (·) being the scalar func-
tion. Note that if AU and ∇ f (·) are positively correlated, LAU is low,
whereas if AU and ∇ f (·) are negatively correlated, LAU is high.

4.2.4 Training REV-INR with Combined Loss Functions
The proposed regularized evidential INR model (REV-INR) is
trained using multiple loss functions combined to achieve both high
reconstruction quality and meaningful, reliable uncertainty estimates.
We observe that training REV-INR with all loss components through-
out all epochs can slightly reduce reconstruction quality and increase
training time significantly. To alleviate this, we adopt a two-phase
training strategy. In the first phase, we train REV-INR using only
LMSE , bringing the model into a stable state with high prediction
quality. In the second phase, we introduce LEV along with the
two uncertainty regularization terms, LAU and LEU , and continue
training for the remaining epochs. This strategy yields a stable and
reliable REV-INR model that achieves superior prediction quality
while producing meaningful and calibrated uncertainty estimates.
Therefore, if REV-INR is trained for a total of n epochs, the final
training strategy is defined as follows:

LREV−INR = LMSE , for 1 < epoch < n/2

LREV−INR = LMSE +λ1LEV +λ2LEU +λ3LAU , for n/2 ≤ epoch ≤ n

where λ1, λ2, and λ3 are three weight parameters used to balance the
influence of evidential loss and the two uncertainty regularization
components during training. These weights are chosen empirically
and more information can be found in the supplementary material.

4.3 Monte Carlo Dropout INR (MCD-INR) Enhanced with
Aleatoric Uncertainty Estimation Capability

To build a Monte Carlo Dropout–based INR (MCD-INR), we first
insert dropout layers into the base residual INR model. Kendall et
al. [20] and Saklani et al. [34] demonstrate that applying dropout
after every layer can act as a strong regularizer, often degrading
prediction quality. Therefore, a dropout layer after only a subset
of layers—or solely after the last layer—can be used to simulate
a partial Bayesian neural network. Following this strategy, we ap-
ply post-activation dropout only at the last residual block, which
allows us to obtain high-quality predictions [34]. With this design,
MCD-INR predicts only data values and can estimate EU by ac-
tivating dropout during inference and computing the variance in
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predictions across multiple forward passes. In this work, we extend
conventional MCD-INR to also estimate AU , enabling the model to
learn the inherent noisiness of volumetric data at each grid point.
To achieve this, we add an additional neuron in the output decoder
layer so that the model simultaneously predicts the scalar value and
its associated per-point variance. A standard way to jointly learn
mean and variance is to use the Gaussian negative log-likelihood
(NLL) as the loss function. Thus, MCD-INR is trained to output
both the predicted mean and variance for each grid point. The overall
MCD-INR architecture is illustrated in Fig. 1b.

4.3.1 Value Prediction and Uncertainty Estimation
During inference we first enable dropout. For a given input coordi-
nate, n predictions are obtained by performing n stochastic forward
passes through the model. The average of these n predictions is taken
as the expected scalar value, while the average of the n predicted
variances represents the AU . Finally, the variance of the n predicted
scalar values across the forward passes provides the EU . Hence,
considering n stochastic forward passes for an input, if ŷi denotes
the predicted scalar value and σ2

i the corresponding variance for the
i-th forward pass, the following expressions are used to compute the
expected scalar value (µ), EU , and AU :

E[µ] =
1
n

n

∑
i=0

ŷi, AU =
1
n

n

∑
i=0

σ
2
i , EU =Var(ŷi)

4.3.2 Loss Functions
To simultaneously learn the values and their associated variances, the
Gaussian negative log-likelihood (NLL) is used as the loss function.
The Gaussian NLL loss function is given by:

LGaussNLL =
1
2

log
(
2πσ

2)+ (y−µ)2

2σ2

Following a strategy similar to REV-INR, we incorporate the con-
ventional mean squared error loss to achieve both high reconstruc-
tion quality and reliable uncertainty estimates. The final loss func-
tion used to train the MCD-INR, with λ1 being the weight for the
LGaussNLL, is therefore given by:

LMCD−INR = LMSE +λ1 ·LGaussNLL

4.4 Regularized Multi-Decoder INR (RMD-INR) Equipped
with Aleatoric Uncertainty Estimation Capability

We adopt from the shared-encoder, multi-decoder architecture pro-
posed in [50] to build a the Regularized Multi-Decoder INR (RMD-
INR). In our implementation, we use MLPs for both the encoder
and decoders of RMD-INR. We call this new model RMD-INR, and
enhance it with the ability of AU estimation, which was lacking in
RMDSRN. The RMD-INR consists of five decoder heads with each
decoder independently predicting the scalar value. To enable each
decoder head to predict both the scalar value and its associated AU ,
we add an additional neuron at the output layer of each decoder.
This modified model architecture is illustrated in Fig. 1c.

4.4.1 Value Prediction and Uncertainty Estimation
During inference, each decoder head of the RMD-INR predicts both
the scalar value and the associated AU . The final expected scalar
value is obtained by averaging the scalar values predicted by all
decoder heads. Similarly, AU is estimated by averaging the AU val-
ues predicted by the decoder heads, while the variance of the scalar
values represents the EU . Hence, considering D decoder heads, if ŷi
denotes the predicted scalar value and σ2

i the corresponding variance
from the i-th decoder head, the following expressions can be used to
compute the expected scalar value (µ), AU , and EU :

E[µ] =
1
D

D

∑
i=0

ŷi, AU =
1
D

D

∑
i=0

σ
2
i , EU =Var(ŷi)

Figure 2: Visualization of the Teardrop Dataset for isovalue
159.9798. The middle segment shows the mean isosurfaces gener-
ated by REV-INR, RMD-INR, and MCD-INR, respectively, where
differences from the ground truth are highlighted (dashed circles).
The right segment shows the corresponding uncertain isosurfaces
using the Level Crossing Probability (LCP). We observe that REV-
INR produce the most accurate LCP visualization.

4.4.2 Loss Functions

RMD-INR is trained using the same loss functions as MCD-INR,
discussed above in 4.3.2. To enforce meaningful EU estimation, we
follow the regularization strategy suggested in [50] for RMDSRN.
Hence, we incorporate a KL-Divergence regularization term in the
RMD-INR’s loss function which enforces minimization between
predicted variance (EU) and prediction error values. We follow the
exponential growth weight scheduler as proposed in [50] to vary the
weight of the regularizer term during training. Therefor the final loss
function is given as follows:

LRMD−INR = LMSE +λ1 ·LGaussNLL +λ2 ·DKL(EU,error)

where λ1 is the weight for the LGaussNLL loss component and λ2 is
the weight for the KL-divergence, DKL(EU,error).

4.5 Hyperparameters

The base deterministic INR consists of a residual block-based archi-
tecture, where each residual block has two layers with 100 neurons
each. Following the suggestions reported in [15], we make our
INRs wider rather than deeper to achieve a better storage–quality
trade-off. We use three residual blocks to construct REV-INR and
MCD-INR. We design RMD-INR to occupy the same disk space for
storing model parameters as MCD-INR and REV-INR, in order to
compare all methods under a similar number of parameters and stor-
age requirements. Hence, for RMD-INR, each layer consists of 70
neurons, and there are five decoder heads (see Fig.1c), as suggested
in [50]. For training all models, including our REV-INR across
all datasets, we conduct empirical experiments to select a suitable
and consistent learning rate and batch size that produce stable and
high-quality predictions. We employ the Adam optimizer [22] with
a learning rate of 0.00005, and the two optimizer coefficients β1 and
β2 are set to 0.9 and 0.999, respectively. For all methods, a learning
rate decay scheme is applied with a decay factor of 0.8 and a step
size of 15. All models are trained for up to 300 epochs to ensure
convergence. For all datasets, the weight of the Gaussian NLL loss
component is set to 0.001 for both MCD-INR and RMD-INR.

5 RESULTS

In this section we present qualitative and quantitative results. The
spatial resolution, the size of each INR, raw data are reported in
Table 1. We use a GPU server with NVIDIA RTX A6000 GPUs,
each with 48 GB of GPU memory, for experimentation.
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Figure 3: Visualization of the Vortex Dataset for the isovalue 5.8. The middle column shows the mean isosurfaces generated by REV-INR,
RMD-INR, and MCD-INR, respectively, where differences from the ground truth are highlighted(dashed circles). The right column shows
the corresponding uncertain isosurfaces using the Level Crossing Probability (LCP), showing the most probable isosurface. We observe that
REV-INR produce the most accurate LCP visualization. The isosurface generated by Det-INR also fails to preserve the thin connection.

Figure 4: Visualization of the Combustion Dataset. The ground truth scalar field is compared with REV-INR, RMD-INR, and MCD-INR.
REV-INR better preserves complex flame structures, as highlighted in the zoomed-in regions marked with black boxes.

Figure 5: Visualization of the Foot Dataset. The ground truth scalar
field (left) is compared with reconstructions from REV-INR, RMD-
INR, and MCD-INR. The highlighted regions around the joints of
bone segments indicate that REV-INR achieves the closest match to
the ground truth compared to the other methods.

5.1 Uncertainty-Informed Isosurface Visualization
We demonstrate how uncertainty estimates can help improve isosur-
face extraction and visualization, making them more reliable and
informative. We show that the isosurfaces extracted using only the
predicted mean fields contain inaccuracies. In contrast, uncertainty

information can help identify under- or over-confidently predicted
isosurface regions, allowing users to locate potential errors. Since
our uncertainty-aware INRs produce uncertainty estimates at each
grid location, we utilize isosurface uncertainty quantification and
visualization techniques to generate informative and trustworthy re-
sults. This approach also helps validate that the uncertainty estimates
produced by REV-INR are meaningful and essential for creating
uncertainty-informed visualizations. Consequently, we employ un-
certainty visualization techniques on the isosurfaces extracted from
INR-reconstructed scalar fields, which are pivotal for making INR
predictions more reliable and trustworthy by effectively communi-
cating uncertainty. For completeness and comparative purposes, we
also include results from deterministic INRs (Det-INR). From Ta-
ble 1, we observe that while the Det-INRs achieve slightly higher or
comparable reconstruction PSNR, they still produce erroneous iso-
surfaces, which can cause inaccurate feature interpretation. Hence,
uncertainty-aware INRs are essential to remedy such issues.

Since uncertain INRs produce distribution-based volume, we
employ uncertain isosurface algorithms [5, 43] for producing
uncertainty-informed visualizations. We visualize the level-crossing
probability (LCP) within a cell. The LCP implicitly communicates
uncertainty by computing the probability of an isosurface crossing
through a grid cell. Thus, high LCP values indicate a higher likeli-
hood of isosurface presence. Our uncertainty-aware INRs generate
a predicted mean µ and variance σ2 at each grid location. There-
fore, we use the parametric Gaussian distribution-based uncertainty
modeling for isosurface extraction.
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Teardrop Dataset. We present results for uncertainty-informed
isosurface visualization of the Teardrop dataset [23] in Fig. 2 for
the isovalue 159.9798. To generate uncertain isosurfaces, we use
EU values as the variance at each grid location, while the predicted
scalar values are treated as the mean of the Gaussian distribution. We
observe that the predicted mean isosurfaces for all three methods are
broken at the central region when compared to the ground truth. The
isosurface generated by Det-INR also produce incorrect isosurface.
This indicates that the deterministically extracting isosurfaces using
only the mean values or using a deterministic INR can be erroneous.
Examining the LCP field for the three methods, we find that both
REV-INR and RMD-INR recover the thin connecting region with
high probability, but RMD-INR tends to overestimate the structure
of the connection, resulting in a larger spatial spread compared to
REV-INR. In contrast, LCP of MCD-INR fails to recover the connec-
tion altogether. These results highlight the superiority of REV-INR
over MCD-INR, RMD-INR, and Det-INR, reinforcing the advan-
tages of uncertainty-aware INRs and demonstrating how uncertainty
information can lead to more reliable isosurface visualization.

Vortex Dataset. In Fig. 3, we present results of mean and uncer-
tain isosurface visualization for the Vortex dataset [39] at isovalue
5.8. While exploring the vortex features, an important task is to
correctly detect the merge and split events. Keeping this task in
mind, from the mean isosurfaces, we observe that both RMD-INR
and MCD-INR miss the connection between two tubular vortices,
as highlighted by the blue circular regions in the zoomed figure.
Isosurface generated by Det-INR also fails to preserve this, resulting
inaccurate feature interpretation. The LCP fields reveal that while
REV-INR and RMD-INR recover the thin connecting region, RMD-
INR spatially overestimates the isosurface. The LCP of MCD-INR
fails to recover the connection. We also highlight another region in
the LCP of RMD-INR showing inaccuracy in LCP. In contrast, REV-
INR provides a crisp and accurate representation of the isosurface,
demonstrating REV-INR’s superiority, even over the Det-INR with
a slightly higher overall reconstruction PSNR.

5.2 Reconstructed Volume Visualization
First, we perform direct volume visualization using the reconstructed
scalar fields to demonstrate the superiority of REV-INR over MCD-
INR and RMD-INR. From Table 1, we observe that REV-INR
achieves the best reconstruction quality, among the uncertainty-INRs,
in terms of PSNR. To further validate this, we conduct a qualitative
visual analysis through volume rendering. In Fig.4 and Fig.5, we
present the volume rendering results for the Combustion and Foot
datasets, respectively. For all methods, we use a consistent transfer
function setup and color scale to ensure fair comparisons. From
Fig.4, we observe that several regions containing complex flame
structures are better preserved by REV-INR compared to MCD-
INR and RMD-INR. The zoomed-in regions, highlighted with black
boxes, illustrate these differences. Similarly, in Fig.5, REV-INR pro-
duces the most accurate volume visualizations for the Foot dataset
when compared to the other two methods. The highlighted regions
around the joints of different bone segments in Fig. 5 clearly show
that REV-INR achieves the closest match to the ground truth. We fur-
ther compute image-level metrics—PSNR, SSIM, and LPIPS—and
report their values in Fig.4 and Fig.5 for all three methods. We ob-
serve that REV-INR outperforms MCD-INR and RMD-INR across
all three metrics, producing the most accurate volume visualizations.

5.3 Evaluation of Uncertainty Estimates
5.3.1 Evaluation of Epistemic Uncertainty (EU) Estimates
Assessment of the quality of uncertainty estimates is important for
understanding their usability. Epistemic uncertainty reflects the
model’s prediction uncertainty, reflecting the model’s confidence in
the accuracy of the predicted values. It is an inherent property of the
model. Since we deal with large volumetric data and advocate for

Figure 6: Volume visualizations of EU and error fields for REV-INR,
RMD-INR, and MCD-INR for the Foot dataset (top). REV-INR’s
EU aligns closely with high-error regions, while RMD-INR and
MCD-INR show overconfident predictions in low-error areas. The
bottom row shows visualization of local variance, interpolation error,
and AU. REV-INR’s AU field aligns best with both local variance
and interpolation error, achieving the highest correlations.

Figure 7: Visualization of EU and error fields generated by REV-
INR, RMD-INR, and MCD-INR for the velocity field of the Hur-
ricane Isabel dataset. REV-INR’s EU aligns best with error fields,
with correlation values confirming REV-INR’s superiority.

downstream analysis tasks to be solely driven by model-predicted
data, we recognize that raw data may not be available for error
quantification during visual analysis. In such scenarios, EU can
serve as a proxy for prediction error and can be used to produce
interpretable and informative visualizations that highlight potentially
erroneous regions for domain experts. Here, we present comparisons
between volume visualizations of EU and the corresponding error
fields for REV-INR, RMD-INR, and MCD-INR to compare spatial
correlations between EU and error fields across the three method. A
higher spatial correlation indicates more interpretable EU estimation.

The top half of Fig.6 shows EU and error field visualizations
for the Foot dataset. It is observed that the EU field produced
by REV-INR shows higher and meaningful spatial overlap with
highly erroneous regions when compared against the EU and error
fields generated by RMD-INR and MCD-INR. The EU fields of
RMD-INR and MCD-INR contain some high EU regions where
the error is low, indicating potential overconfident predictions from
RMD-INR and MCD-INR. In comparison, the EU predicted by
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Figure 8: Visualization of AU, local variance, and interpolation
error for the velocity field of the Isabel dataset. REV-INR shows the
highest spatial overlap and correlation, indicating more reliable AU
estimates than RMD-INR and MCD-INR.

REV-INR aligns well with the high-error regions. We also report
the quantitative correlation values in Fig.6, which also show higher
correlation for REV-INR. A similar analysis using the velocity field
of the Hurricane Isabel dataset is shown in Fig.7. We observe a
similar trend, where the EU and error fields generated by REV-INR
are better aligned compared to RMD-INR and MCD-INR. The EU
fields generated by RMD-INR show poor spatial correlation, as
illustrated in Fig.7. The reported correlation values also support
these observations, showing that the EU estimates produced by REV-
INR serve as a more appropriate proxy for prediction errors and can
be used to produce reliable and informative visualization results.

5.3.2 Evaluation of Aleatoric Uncertainty (AU)

Aleatoric uncertainty (AU) captures the noisiness in the data. In
volumetric data, such noise can arise from the stochasticity of the
simulation and local neighborhood-based variance values can serve
as an indicator of that. To reduce data size, volume data is also
often down-sampled and later, during rendering, interpolated back
to the original resolution to achieve high-quality visualization. This
process of down-sampling and subsequent up-sampling introduces
interpolation errors, which we consider another potential source of
noise. Since AU captures data uncertainty, it is expected to reflect
these types of noise. While regularizing REV-INR, we hypothesized
that regularizing AU values during training using gradient magni-
tudes can help produce meaningful and interpretable AU values. The
assumption is that local gradient magnitudes can serve as potential
cues to identify regions where high noise is likely to be introduced
during data transformations, such as interpolation–based up/down-
sampling. Gradient magnitudes are also conceptually expected to
show correlation with local data variance values. To study the es-
timated AU quality, we compute correlations between (1) AU and
local variance and (2) AU and interpolation error.

The bottom half of Fig. 6 shows results for the Foot dataset. We
apply an 8×8×8 down-sampling to compute the interpolation error
field and a 2×2×2 window for local variance estimation. The AU
field produced by REV-INR exhibits the highest spatial overlap with
both the local variance and interpolation error fields compared to
RMD-INR and MCD-INR. Consistently, the correlations between

(1) AU and local variance and (2) AU and interpolation error are also
highest for REV-INR, as reported in Fig. 6. A similar analysis on the
velocity field of the Isabel dataset is shown in Fig. 8, where a 5×5×5
down-sampling and a 2×2×2 window are used. Visual comparison
indicates that REV-INR achieves the strongest overlap with both
local variance and interpolation error among all methods. The higher
correlation values further confirm that REV-INR provides superior
AU estimates compared to RMD-INR and MCD-INR.

5.4 Comparison with Compression Methods
In Fig. 9, we compare the proposed REV-INR with two state-of-
the-art compression methods: TTHRESH [6] and Zfp [26]. For
Zfp, we perform compression under both fixed-accuracy and fixed-
bitrate settings. The comparison is conducted using the Vortex and
Heptane datasets. From Fig. 9, we observe that REV-INR produces
the most accurate isosurface visualizations, while TTHRESH and
Zfp fail to preserve intricate isosurface features (highlighted by the
red dotted regions). We also observe that Zfp introduces noticeable
visual artifacts in the isosurfaces. In Fig. 9, we further provide
the reconstruction PSNR and compression ratio for quantitative
comparison, showing that REV-INR achieves the best compression
ratio (CR) vs. PSNR trade-off compared to TTHRESH and Zfp.

6 QUANTITATIVE EVALUATION

Model Size vs. Reconstruction. Table 1 presents the quantita-
tive evaluation of the volume reconstruction quality for comparable
model sizes. To assess the overall volume reconstruction quality,
we compute the peak signal-to-noise ratio (PSNR). We observe
that while REV-INR produces the highest PSNR among the uncer-
tain INRs, for the Combustion, Isabel, Foot, Vortex, and Heptane
datasets, REV-INR produces either comparable or slightly lower
PSNR compared to Det-INR. For the Teardrop dataset, REV-INR
produces the highest PSNR. It is to be noted that while Det-INR
produces slightly higher PSNR for a few test data, in Section 5.1, we
have demonstrated how Det-INR can produce erroneous isosurfaces
even with higher PSNR. Hence, we advocate for uncertainty-aware
INRs over their deterministic counterparts to enhance reliability in
INR-predicted results. Among the uncertain INRs, REV-INR pro-
duces superior results, achieving up to a compression ratio of 2100×.
This superior trade-off between storage and PSNR is also evident in
Fig. 10a, where REV-INR consistently occupies the top-left region
of the scatter plot, indicating a better storage–PSNR trade-off.

Uncertainty Estimation. To assess the interpretability and us-
ability of AU and EU values, we compute the Pearson correlation
between the EU and error fields to evaluate their alignment. To
demonstrate the quality of the AU values, we compute the correla-
tion of AU with (1) local variance and (2) interpolation-based error,
obtained by first down-sampling a volume and then up-sampling it
back to the original resolution using linear interpolation. We observe
that, AU estimates generated by REV-INR yield the highest correla-
tion with local variance values. When computing correlations with
interpolation error, REV-INR achieves the highest correlation for all
datasets except the Vortex dataset, where MCD-INR produces the
highest correlation. This higher correlation between AU-LocalVar.,
AU-Interp. Error, and EU-prediction error is also evident in Fig. 10b,
where the Radar plot demonstrates the same. Another way to evalu-
ate uncertainty is by computing the Negative Log-Likelihood (NLL)
using the predicted mean and variance of AU and EU to parame-
terize Gaussian distributions as suggested in [50]. Table 1 reports
the results. REV-INR achieves the best NLL EU on the Isabel and
Foot datasets, while MCD-INR performs best on the remaining
datasets. For NLL AU, RMD-INR and MCD-INR yields lower NLL
than REV-INR, which is expected since both methods are explicitly
optimized using a Gaussian NLL loss.

Training and Inference Timings. From Table 1, we observe
that REV-INR takes the longest to train, with training time reaching
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Figure 9: Comparison of REV-INR with TTHRESH and Zfp. It is observed that REV-INR achieves the best compression ratio (CR) vs. PSNR
trade-off as well as the most accurate isosurface visualization.

Table 1: Quantitative evaluation of REV-INR, MCD-INR, and RMD-INR using various performance metrics across multiple datasets. In PSNR
and Recon. Time columns, the best values are boldfaced and underlined, while the second-best values are boldfaced only.

Dataset Model Model
Size (KB) PSNR (dB) ↑ Corr. (EU

and Error) ↑
Corr. (AU and

Loc. Var.) ↑
Corr. (AU and
Interp. Err.) ↑ NLL EU ↓ NLL AU ↓ Train Time (Hrs.) Recon.

Time (Secs.) ↓

Teardrop
128x128x128

8MB

REV-INR 246 78.06 0.445 0.889 0.73 -0.973 -0.35 1.16 0.13
MCD-INR 246 75.91 0.234 0.086 0.034 -6.17 -5.95 0.43 3.77
RMD-INR 249 77.79 -0.037 0.384 0.223 0.421 -5.95 0.42 0.28
Det-INR 248 72.29 - - - - - 0.374 0.11

Isabel
500x500x100

100MB

REV-INR 247 47.17 0.368 0.544 0.394 -1.668 -1.01 15.34 1.66
MCD-INR 246 45.09 0.196 0.238 0.361 40.45 -3.539 7.91 88.55
RMD-INR 249 43.79 0.065 0.234 0.319 -0.195 -3.462 4.16 2.92
Det-INR 248 47.61 - - - - - 4.82 1.59

Combustion
480x720x120

158.2MB

REV-INR 246 45.55 0.688 0.522 0.613 -1.188 -0.951 10.87 2.75
MCD-INR 245 42.68 0.338 0.303 0.542 -5.172 -4.785 5.23 138.25
RMD-INR 249 43.01 0.115 0.25 0.478 0.47 -4.51 3.48 4.84
Det-INR 248 47.7 - - - - - 3.002 4.44

Foot
500x500x360

343.32MB

REV-INR 246 43.34 0.573 0.688 0.643 -2.337 -1.551 21.94 3.73
MCD-INR 245 43.04 0.266 0.468 0.614 5.431 -3.617 8.73 997.02
RMD-INR 249 42.39 0.134 0.398 0.545 0.183 -3.51 8.13 10.45
Det-INR 248 44.83 - - - - - 9.93 5.85

Vortex
512x512x512

512MB

REV-INR 247 58.66 0.848 0.776 0.348 -2.869 -1.979 37.95 11.8
MCD-INR 246 53.05 0.191 0.113 0.46 -4.34 -4.355 15.93 455.19
RMD-INR 249 58.39 0.04 0.305 0.409 -0.118 -4.89 9.43 15.52
Det-INR 248 60.02 - - - - - 14.87 8.98

Heptane
512x512x512

512MB

REV-INR 247 46.88 0.488 0.562 0.682 -2.119 -1.494 21.14 5.56
MCD-INR 246 43.84 0.19 0.446 0.621 -5.6 -5.371 15.96 455.74
RMD-INR 249 41.22 0.145 0.503 0.663 0.419 -5.06 8.84 15.58
Det-INR 248 47.35 - - - - - 14.59 8.84

up to 2–3× that of the other uncertain INRs, but its inference time
either the fastest or is on par with Det-INR. For the Combustion,
Foot, and Heptane datasets, REV-INR achieves the fastest infer-
ence. The primary reason for REV-INR’s longer training time is
that it uses a complex evidential loss function, which computes the
KL divergence between two NIG distributions—a computationally
expensive operation. Additionally, the AU and EU regularization
introduces further computations, contributing to the higher training
cost of REV-INR. However, now that training is performed offline
and is a one-time operation while inference time is more critical
for visual analysis. As REV-INR is either the fastest or comparable
to Det-INR in inference time with robust uncertainty estimates, we
believe that REV-INR can be considered the preferred choice for

uncertainty-aware volume modeling and visualization.

Ablation Study: REV-INR With and Without Uncertainty
Regularization. We conduct an ablation study to evaluate the effec-
tiveness of the proposed EU and AU regularization losses. We train
REV-INR with and without the regularization on Teardrop, Isabel,
Foot, and Heptane datasets. The results are reported in Table 2. We
observe that, without the uncertainty regularization, REV-INR yields
lower correlations, making the interpretation of the unregularized
uncertainty estimates more challenging. Hence, we conclude that
the proposed uncertainty regularizations are essential for training
REV-INR to obtain meaningful uncertainty estimates.
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(a) PSNR vs. Storage trade-off scatterplot.

(b) Correlation strength Rader plot.

Figure 10: Fig. 10a shows that REV-INR has the best trade-off as
it is located at the top-left corner indicating minimal storage and
higher PSNR among all methods. Fig. 10b depicts that REV-INR
demonstrates the highest correlation between AU-LocalVar., AU-
Interp. Error, and EU-prediction error for all methods.

Table 2: Impact of EU and AU regularization for REV-INR.

Dataset Corr. (EU and Prediction Error) ↑ Corr. (AU and Loc. Var.) ↑ Corr. (AU and Interp. Err.) ↑
With

Regularization
Without

Regularization
With

Regularization
Without

Regularization
With

Regularization
Without

Regularization
Teardrop 0.445 0.317 0.889 0.351 0.73 0.192

Foot 0.573 0.04 0.688 0.119 0.643 0.291
Isabel 0.368 0.012 0.544 0.077 0.394 0.122

Heptane 0.488 0.07 0.562 0.163 0.682 0.391

7 DISCUSSION AND LIMITATIONS

Our results establish the overall superiority of REV-INR, producing
calibrated and interpretable uncertainty fields, allowing robust value
and uncertainty prediction within a single forward pass. We also ob-
serve that while Deterministic INRs (Det-INR) occasionally report
slightly higher PSNR, they can produce erroneous or topologically
incorrect isosurfaces, resulting in misleading interpretations. This
observation emphasizes that PSNR is only a global quality metric
and does not reflect structural correctness of extracted isosurfaces.
In contrast, uncertainty-aware models such as REV-INR produce in-
terpretable, topologically correct results, underscoring the necessity
of uncertainty modeling for reliable INR-based visualization.

A potential limitation of REV-INR is its higher training cost,
primarily due to the evidential loss and uncertainty regularization
computations. However, since training is a one-time offline process,
and in practice, faster volumes reconstruction is more desirable, and
considering REV-INR’s overall superiority over existing techniques,
REV-INR can be the preferred choice for uncertainty-aware volume
modeling. Our future research will explore multi-resolution hash
encoding [29, 48], feature-grid-based INR construction, and approx-

imate KL-divergence-based loss computations to reduce the training
time of REV-INR while retaining the advantages of REV-INR.

While we find that using the gradient as a regularization measure
for aligning the AU estimates works well for all the test volume
datasets, there may be volumetric datasets where the gradient is only
weakly correlated with data variance. In such cases, the estimated
AU may not generalize well to capture the local data variance. Fi-
nally, across all three methods, uncertainty regularization introduces
a trade-off between reconstruction fidelity and uncertainty calibra-
tion. Future work will explore automated strategies to balance these
competing objectives, making REV-INR more robust while improv-
ing reconstruction quality without sacrificing reliability.

8 CONCLUSIONS AND FUTURE WORK

This work highlights the importance of incorporating uncertainty
into INR-based visual analysis. We introduce REV-INR, an
uncertainty-aware regularized INR, and demonstrate its superiority
over two uncertain INRs. Future work will focus on accelerating
REV-INR and extending it to multivariate and ensemble datasets.
These uncertainty-informed visualizations reveal regions requiring
further training and expose model limitations, underscoring the im-
portance of model confidence for trust and reliability in scientific
decision-making.
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