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ABSTRACT
Identification of salient features from a time-varying multivariate
system plays an important role in scientific data understanding. In
this work, we present a unified analysis framework based onmutual
information and two of its decomposition: specific and pointwise
mutual information to quantify the amount of information content
between different value combinations from multiple variables over
time. The pointwise mutual information (PMI), computed for each
value combination, is used to construct informative scalar fields,
which allow close examination of combined and complementary in-
formation possessed by multiple variables. Since PMI gives us a way
of quantifying information shared among all combinations of scalar
values for multiple variables, it is used to identify salient isovalue
tuples. Visualization of isosurfaces on those selected tuples depicts
combined or complementary relationships in the data. For intuitive
interaction with the data, an interactive interface is designed based
on the proposed information-theoretic measures. Finally, successful
application of the proposed method on two time-varying data sets
demonstrates the efficacy of the system.

CCS CONCEPTS
•Mathematics of computing→ Information theory; •Human-
centered computing → Scientific visualization; Visualization
techniques; Visual analytics;

KEYWORDS
Information theory, pointwise mutual information, specific mutual
information, time-varying multivariate data exploration.

1 INTRODUCTION
Effective feature exploration in time-varying multivariate data sets
is challenging as a thorough understanding of the intricate relation-
ships among multiple variables is involved. Oftentimes, instead of
looking at the total correlation among variables, scientists search
for specific value combinations of multi-variables which show pos-
itive or negative association to get in depth knowledge about the
interaction of such variables. So, quantifying the importance of
individual value combinations of multiple variables has gained sig-
nificant importance in the recent years. Multi-field analysis based
on their value combinations allows experts to understand how the
total shared information among variables is distributed within all
of its value combinations. It is to be noted that, a majority of the

existing methods have mostly focused on studying the average be-
havior of the variables, but little focus is on how the specific values
of the variables interact with each other. Analysis of importance of
scalar values from a single variable system [Bajaj et al. 1997; Carr
et al. 2000; Duffy et al. 2013; Khoury and Wenger 2010; Scheidegger
et al. 2008], and multi-field domain [Biswas et al. 2013; Liu and
Shen 2016] has been done in the past. But, a guideline to study
the relationships of specific value combinations in time-varying
multivariate data sets is still missing.

To address the aforementioned issues, an information-theoretic
framework is presented in this work to help the scientists to con-
duct detailed analysis of time-varying multi-fields. It uses mutual
information (MI) and two of its decomposition: (1) specific mutual
information (SMI), and (2) pointwise mutual information (PMI) to
quantify information of scalar values and value combinations. Time-
varying study of multi-fields based on their value combinations
using PMI constitutes the core of our framework, which is a novel
contribution of this work. We observe the fact that, while decom-
posed hierarchically in a top-down fashion, MI conveys different
facets of information, and by integrating all these information in a
unified framework, in depth study of time-varying data sets based
on their specific value combinations becomes possible.

The proposed framework enables the experts to select variable
combinations based on their shared information content, and fur-
ther guides them to identify interesting features from the data. We
quantify information content of every spatial point by calculating
its PMI. Using PMI values at each spatial location, a new scalar field
is constructed, called PMI field, which are segmented into different
regions with value combinations having strong co-occurrences or
noticeably low association. High co-occurrence in a region indicates
the existence of a joint feature, and regions with low co-occurrence
are explored for any potential surprise. We employ this idea in the
time domain to study the temporal evolution of such regions. By
aggregating several PMI fields from consecutive time steps, we cap-
ture feature’s temporal evolution. In order to identify temporally
salient value combinations, we utilize the temporal information
content of the value combinations following a refinement-based
strategy. Positive feedback from the domain expert demonstrate
the usefulness of our framework in time-varying data exploration.

2 RELATEDWORKS
Information theory [Cover and Thomas 2006; Shannon 2001; Verdú
1998] has been used extensively for solving many problems in
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Figure 1: A schematic diagram of our framework.

visualization. Detailed reviews about information theory in visual-
ization can be found in [Chen et al. 2016; Chen and Jänicke 2010;
Rigau et al. 2008; Sbert et al. 2009; Wang and Shen 2011].

MI has been extensively used previously for registration and data
fusion [Collignon et al. 1995; Hill et al. 2001; III et al. 1996; Maes
et al. 1997; Pluim et al. 2003]. Identification of the best view and
its smooth transition are achieved in [Viola et al. 2006] by using
MI. By calculating MI between the intensity values of data and
color pixels, Bramon et al. [Bramon et al. 2013a] measure the in-
formation transfer between input data and output pixels. Recently,
researchers have used MI for the selection of streamlines based on
coherent view directions [Ma et al. 2013; Tao et al. 2013]. Bruckner
et al. [Bruckner and Möller 2010] have proposed similarity based
exploration of isosurfaces of univariate data using MI. A level-set
based method has been presented in [Wei et al. 2013] to analyze
the representativeness of an isosurface of a volumetric data. Fi-
nally, MI has also been used for analyzing scene complexity [Feixas
et al. 1999], shape complexity [Rigau et al. 2005], and mesh im-
portance analysis [Feixas et al. 2006]. Haidacher et al. [Haidacher
et al. 2011] have extended MI based analysis in multi-modal domain
for analyzing multi-modal surface similarities. In the recent years,
researchers have sought after specific mutual information (SMI)
because of its ability to quantify information of a scalar value given
another variable. Bramon et al. [Bramon et al. 2012] have used SMI
to fuse multi-modal data sets. Biswas et al. [Biswas et al. 2013]
have created an information map based on SMI, which can be used
to select isovalues of one variable which are either predictable or
uncertain with respect to the other variable. SMI based transfer
function design has also been introduced in [Bramon et al. 2013b].

PMI is a measure in information theory which quantifies infor-
mativeness of any specific value combination of multi-variables.
Based on PMI, the value combinations can be divided into two
broad classes which show distinct statistical features in data. The
proposed method extends this value combination based analysis in
temporal domain and allows users to interactively select temporally
salient value combinations which either show strong temporal as-
sociation or complementary behavior. Even though Haidacher et al.
[Haidacher et al. 2008] used PMI to retrieve the opposite informa-
tion, use of PMI to perform time-varying analysis of multivariate
data by exploiting the time-varying relationships of their specific
value combinations is novel in our approach. It allows us to iden-
tify regions in the data set where scalar value combinations show
strong or weak statistical association, and we explore how these
regions evolve over time.

3 MULTIVARIATE TEMPORAL ANALYSIS
FRAMEWORK

Given a time-varying multivariate data set, our analysis allows: (1)
selection of several important variable combinations, and a suitable
time range for detailed exploration; (2) efficient detection of regions
with joint or complementary multivariate features over time; (3)
systematic identification of temporally salient scalar value combina-
tions. Figure 1 shows a schematic view of our complete framework,
where three hierarchical variations of MI are highlighted and how
they are used to analyze multi-variate time-varying data is shown.
In the following, we describe our framework in detail.

3.1 Defining Variable Interestingness
Typically in a time-varying multivariate domains, not all variables
are relevant for analysis. Irrelevant variables can make the discov-
ery of important features difficult. So, it is challenging to determine
what variable combinations are salient and how the saliency of
relationships evolves over time. Fortunately, domain experts usu-
ally have some prior knowledge about the data set and their first
goal is to confirm those known facts using existing visualization
techniques and then hypothesize new theories. Our variable selec-
tion technique exploits information theory to provide guidance for
the scientists. When scientists start with any specific variable, we
analyze the shared information of this reference variable with the
other variables. Since this step is the beginning of our unified work-
flow and only requires us to quantify the total information shared
between all the variables, MI seems a good choice for defining the
information overlap between variables. It is defined as:

I (X ;Y ) =
∑
x ∈X

∑
y∈Y

p(x ,y) log p(x ,y)
p(x)p(y) (1)

where X and Y are two random variables, and p(x), p(y) are the
marginal probabilities of observation x of X , and y of Y , and p(x ,y)
is their joint probability. Since MI considers all the possible values
and quantifies the total information overlap between two random
variables, we can only conclude about the degree of overlap of
information between two random variables. For a time-varying data,
the relationships among the variables change over time, therefore,
variables can be identified based on their temporal interestingness.
We quantify this by observing the change of MI over the time for
selected variables which depicts how the information overlap of the
these variables changes with time. Formally, this can be captured
by calculating the temporal gradient of MI for a given variable as:

I
′
t (X ;Y ) = dI (X ;Y )

dt
(2)

where X and Y are two selected variables and I
′
t (X ;Y ) is the tem-

poral gradient of MI between time steps t and t + 1.

3.2 Combined and Complementary
Informativeness Characterization

Given a variable combination, in this work, we demonstrate a work-
flow that enables users to employ more detailed analysis over a
pair of variables by identifying their salient value combinations.
Given two variables and a pair of scalar values selected from them,
the existence of a strong association between the value pair can be
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(a) (b) (c)

Figure 2: PMI fields of Plume data set. 2a Velocity gradient
magnitude, 2b Zvel field, 2c PMI field of two variables.

concluded if they demonstrate high co-occurrence. The distribution
of these value pairs in the spatial domain can represent a joint mul-
tivariate feature. Similarly, when the individual occurrences of the
values dominate over their co-occurrence as a pair, the value pair
tends to follow a complementary distribution. Here we introduce
the information measure that quantifies the shared information for
a specific value combination. For two random variables X and Y , if
x is an observation of X and y for Y , then the information content
between them is expressed as:

PMI (x ,y) = log
p(x ,y)
p(x)p(y) (3)

where p(x) is the probability of a particular occurrence x of X ,
p(y) is the probability of y of variable Y and, p(x ,y) is their joint
probability. This information measure is known as the pointwise
mutual information (PMI), which was first introduced in the works
of Church and Hanks [Church and Hanks 1989] for the estimation
of word association norms directly from computer readable corpora.
When p(x ,y) > p(x)p(y), PMI (x ,y) > 0, which means x and y have
higher information sharing between them. If p(x ,y) < p(x)p(y),
then PMI (x ,y) < 0 indicating the two observations follow comple-
mentary distribution. When x and y do not have any significant
information overlap then p(x ,y) ≈ p(x)p(y) and PMI (x ,y) ≈ 0. In
this case, x and y are considered as statistically independent. It is
to be noted that, mutual information I (X ;Y ) yields the expected
PMI value over all possible instances of variable X and Y [Van de
Cruys 2011].

I (X ;Y ) = E(X ,Y )[PMI (x ,y)] (4)
The sign and absolute value of PMI enables the categorization of the
variable interaction as mentioned above. Using PMI values, both sta-
tistically associated and opposite or complementary regions in the
data can be identified. The regions that have opposite information
will be the unique features in the data which is best represented
by one particular variable among the selected variables. Similarly,
the regions with strong association highlights joint multivariate
features characterized by high co-occurrence.

3.3 Multivariate PMI Fields
Given a multivariate time-varying data set, every spatial point in
the domain has several scalar values associated with it, one from
each variable. Since PMI measures the information content for any
value pair, we can use it to obtain the information content for any
location. To facilitate this fine grained analysis by preserving the
spatial context, we create a new scalar field, called PMI field. In
PMI field, the spatial points contain the PMI values computed from

(a) (b) (c) (d)

Figure 3: PMI fields of Cloud (CLO) and Precipitation (PRE)
of Hurricane Isabel data set using time steps between 20-35.
3a time aggregated PMI field using max function, 3b time
volume, 3c PMI field at T=20, and 3d PMI field at T=34.

the values of the variables at the point. If ζ is the scalar function
that maps each spatial point to its PMI value, this multivariate
interaction field can be formally expressed as: ζ : P 7→ PMI (P),
where P is a spatial location and PMI (P) is the PMI value at P . The
probabilities for the computation of PMI values are estimated from
the histograms of the scalar values obtained from all the grid points.

Figure 2 shows one illustrative example of a PMI field where
Z-velocity and velocity gradient magnitude field of the Solar Plume
data set [Rast 1998] are used to construct the PMI field. Figure 2c
depicts the PMI field constructed using these two variables. It is
evident from Figure 2c that, both Z-velocity and gradient magnitude
field have strong statistical association in the turbulent region of
the plume, which indicates that the scalar value pairs in this region
have higher co-occurrence resulting positive PMI values. However,
around the turbulent region, gradient magnitude has unique activity
that is missing in the Z-velocity. In the PMI field, this region is
considered to contain complementary information which is unique
to the gradient magnitude.

3.4 Time-varying PMI Fields
Next, we aggregate several PMI fields into a single scalar field using
an aggregation function. The aim of this aggregation is to combine
information from a set of time steps into a single scalar field for
capturing time-varying patterns. For example, if a time-varying
feature is identified as a joint activity and if the feature moves
spatially over time, then at every time step, the feature can be lo-
cated by focusing on the regions with higher joint activity. Since
positive and high PMI values reflect joint activity, and relatively
low co-activity regions have negative PMI values, we use max and
min functions for the aggregation. If we use max as our aggrega-
tion criterion, then at every spatial location, PMI values for all the
selected time steps are observed and the maximum value among
them is selected to construct a time aggregated PMI field. Formally,
for a spatial location P , the aggregation value is calculated as:

AддPMI (P) = Ψ(PMIi (P)),∀ i = ts , ts + 1, .., te (5)

where ts and te represent starting and ending time steps, PMIi (P) is
the value of PMI of point P at time step i , and Ψ(.) is the aggregation
function. We also create another scalar field where at every grid
point we put the time step number from which the PMI value is
selected. We call it the time volume which presents the temporal
trace of the feature.

In Figure 3, we demonstrate the usefulness of this idea with an
example where Cloud (CLO) and Precipitation (PRE) variables from
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Hurricane Isabel data set are used. Given the range of time steps
between 20 − 35, we construct the time aggregated PMI field using
max aggregation function. Figure 3a shows the aggregated PMI
field and 3b shows the associated time volume. From Figure 3b we
can visualize how the feature has moved by looking at the change
of color in Figure 3b. Note that, in Figure 3b the color signifies time
steps and it varies from blue to red as time increases.

To allow analysis of the identified feature at specific time steps,
we incorporate a threshold based visualization. Initially users select
a threshold for both high and low PMI values which highlight their
regions of interest at the first selected time step. Then we apply
this threshold to all the other time steps to extract the regions that
show either strong or weak statistical association. For maintaining
consistency, before the threshold is applied, all the PMI fields from
the selected time range are normalized so that the PMI values are
scaled consistently over the selected time window. Figure 3c and
3d show the results of the thresholding where snapshots of time
steps 20 and 34 are displayed respectively. The continuation of
the downward rotational movement of the cloud structures and
precipitation bands are visible from these images.

3.5 Identification of Temporally Salient Scalar
Value Combinations

Acknowledging the fact that the total number of value combinations
can be significantly large, we present a refinement based strategy
which aims at grouping value combinations with similar behavior.
The proposed method exploits both SMI and the PMI to devise a
top-down approach. In our work, SMI measure predictability is used
which was introduced in [DeWeese and Meister 1999]. Formally,
given a value x of the variable X , its predictability is defined as:

SMI (x ;Y ) = H (Y ) − H (Y |x) (6)

where Y is the other selected variable, H (Y ) is the entropy of Y ,
and H (Y |x) is the entropy of Y given observation x . SMI (x ;Y ) is
called predictability because based on the value of SMI (x ;Y ), it can
be inferred, how well the observation x can predict the behavior
of Y . Higher and positive values of SMI (x ;Y ) reflects higher pre-
dictability, whereas, negative values of SMI (x ;Y ) signifies increased
uncertainty about Y after x is observed. So, using SMI (x ;Y ), the
scalar values of X can be divided into two groups: (1) scalars with
positive SMI (x ;Y ) i.e. the predictable scalars, and (2) scalars with
negative SMI (x ;Y ) containing the uncertain scalars of variable X .

After this initial grouping using PMI, the value combinations are
further classified into two groups: (1) combinations with positive
PMI values, and (2) combinations that have negative PMI values.
Here we are focusing on the combined and complementary features
of multi-variables, so, we do not consider the combinations with
PMI value 0. Since our goal is to quantify the temporal trends of the
value combinations, we observe the PMI value of each value com-
bination for all the selected time steps and group them separately
if the value combinations have always positive or always negative
values throughout the specified time range.

Based on the above discussion, the value combinations of variable
X and Y are grouped into 4 distinct classes:

(1) {(xi ,yj ) | ∀i, j where PMI (xi ,yj ) > 0 & SMI (xi ;Y ) < 0}
(2) {(xi ,yj ) | ∀i, j where PMI (xi ,yj ) < 0 & SMI (xi ;Y ) < 0}

(a) (b)

Figure 4: 4a Variable selection for Isabel data set when Qva-
por (QVA) variable is selected. 4b Zoomed in Pressure axis.

(3) {(xi ,yj ) | ∀i, j where PMI (xi ,yj ) > 0 & SMI (xi ;Y ) > 0}
(4) {(xi ,yj ) | ∀i, j where PMI (xi ,yj ) < 0 & SMI (xi ;Y ) > 0}

Given any class, for each value combination in it, we construct a
time series using its PMI values and its temporal saliency is mea-
sured by the variation of the PMI values. Formally, the variation
for a value combination is measured as:

Var (TSi ) =

√√√t2−1∑
j=t1

|PMIi, j − PMIi, j+1 |2 (7)

where, TSi is the time series of ith value combination. PMIi, j
is the PMI value of series TSi at jth time step and the selected
time step range is t1 − t2. A high variation value indicates that
the value combination has weaker association among them and
their occurrences are not consistent temporally. In contrast, the
time series with low variation are likely to reveal a region that has
higher statistical association. With this classification strategy, the
complexity in the relationships among the large number of value
combinations is reduced significantly.

4 INTERACTIVE WORKFLOW
4.1 Identifying Temporally Related Variables
As domain scientists often have some prior knowledge about which
variable is more interesting to initiate the exploration process, we
are interested in seeing the relationships between the reference
(initially picked by the user) variable and the other variables. Figure
4a shows our variable selection interface where Hurricane Isabel
data set is used for demonstration. The reference variable (QVapor)
is selected by the user and placed in the center, while the other
variables are placed such that one is closer to the center if it is
strongly related to the reference variable. The layout has several
benefits: (1) it emphasizes the stronger relationships as the central
part of the visualization, which is more active in the user’s visual
field; (2) it preserves the user’s mental map. The time-varying one-
to-many relationships form a time series for each variable pair.
We visualize these in multiple time plots, which are aligned with
variables in the radar plot. Such a design is usually more efficient
than shared space techniques [Javed et al. 2010] and results in an
overview + detail visualization.
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(a) (b) (c) (d)

Figure 5: Aggregated PMI fields of P and QVA of Isabel data
between time steps 27-47. 5aAggregated PMIfield usingmax
function and 5b its Time volume; 5c Aggregated PMI field
using min function, and 5d its Time volume.

While the location of a variable in the radar plot shows the
strength of the corresponding relationship, each variable itself is
visualized as a pie chart to depict the percentage of the positive
(blue) and negative (red) PMI values for each variable pair. The
segments in a time plot in Figure 4a is colored by the strength of
the relationship, mutual information in this case, while the width
of each segment is modulated by the temporal gradient of the
relationship’s strength. In Figure 4a we also show the selection of
time steps where the gray circles show the time range selected.

With our design, once the user has selected a reference variable
(QVA in this case), they can select another variable and an appropri-
ate time window based on how the information is shared between
it and the reference variable: (1) Varying information overlap: a
variable showing a rapid change of colors with a wide time axis.
(Selected time steps of P in Figure 4a, highlighted by the two gray
circular rings), (2) Constantly high information overlap: a variable
that has mostly red regions for a sequence of time steps. (Later
time steps of PRE, QRA, QCL etc. in Figure 4a), (3) Low information
overlap with high variation: a variable containing blue regions with
a relatively wide time axis (later time steps of U in Figure 4a), (4)
Constantly low information overlap: a variable with mostly blue
regions with a narrow time axis. (Majority parts of the time axis of
QSN, QIC, CLO etc. in Figure 4a).

4.2 Analysis using PMI Fields
After a pair of variables are identified, we construct PMI fields for
each selected time step using those variables and aggregate them
using both max and min functions. This PMI field based visualiza-
tions allow scientists to directly interact with the information in
spatial domain. After the informative regions and temporal trends
are analyzed using the aggregated volumes, we allow users to inter-
act with the specific value combinations so that the scalar values
creating such joint temporal features can be specifically identified.

4.3 Identification of Temporally Salient Scalar
Value Combinations.

In section 3.5 we have described how the value combinations can
be grouped based on their informativeness. Next, we create a his-
togram of all the value combinations in each group using their PMI
variation values. We allow brushing in the variation histogram so
that users can select bins with high or low information variation.
A parallel coordinates plot (PCP) is attached with the histogram, so
that the selected value combinations can be easily visualized. Finally,

(a) PMI field at T=30. (b) PMI field at T=40. (c) PMI field at T=45.

Figure 6: Time-varyingPMIfields of Pressure (P) andQvapor
(QVA) of Hurricane Isabel data set between time steps 27-47.

users can brush the PCP to select specific value combinations and
while visualizing isosurfaces of those selected value combinations,
their PMI time series are also displayed. Users can change the time
steps to inspect the temporal changes of such isosurfaces and also
observe how their PMI values change. Figure 7a shows a variation
histogram where the analysis is done using QVA and P variables
of the Isabel data and the value combinations from the group 1
(described in Section 3.5) is chosen. The light yellow highlighted
region shows the user selected bins and in Figure 7b and Figure 7c
the corresponding PCP and the PMI time series are shown.

5 CASE STUDIES
The experiments were done on a Linux machine with an Intel core
i7-2600 CPU, 16 GB of RAM and an NVIDIA Geforce GTX 660 GPU
with 2GB texture memory. The visualizations were generated using
D3 library [Bostock et al. 2011] and ParaView [Ayachit 2015].

5.1 Hurricane Isabel Data Set
Hurricane Isabel data is a multivariate time-varying data consisting
of 13 scalar fields. The data set is a courtesy of NCAR and the
U.S. National Science Foundation (NSF), and was created using the
Weather Research and Forecast (WRF) model. The resolution of
the grid is 250 × 250 × 50, and there are total 48 time steps. From
Figure 4a, we see that Qvapor (QVA) is selected as the reference
variable for this study. Given QVA, following our variable selection
interface, Pressure (P) is selected as the second variable since it
shows varying information overlap between time steps 27 − 47.

Figure 5a and 5b show the aggregated PMI field and its time vol-
ume when max is used for aggregation. We see that the Hurricane
eye has strong co-activity. Similarly, Figure 5c and 5d depict the
aggregated PMI field and its time volume when min is used for ag-
gregation. The eye wall of the storm is visible as a complementary
feature whose temporal trend is observed from the associated time
volume in Figure 5d. To facilitate exploration of identified regions
at specific time steps, Figure 6 presents 3 selected PMI fields where
we can visualize the combined and complementary regions at three
individual time steps. Figure 6a, 6b, and 6c depict the temporal
changes of the regions of interest at time steps 30, 40, and 45 respec-
tively where reddish yellow regions signify regions with stronger
co-activity and the light blue region which shows the eye wall of
the storm is identified as the complementary informative region.

Figure 7a shows the variation histogram of QVA and P repre-
senting the value combinations when the group with all positive
PMI and negative SMI values of QVA are considered. Brushing
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(a) Variation histogram with positive PMI values. (b) Interactive PCP. (c) PMI time series of selected value combinations.

Figure 7: Selection of salient scalar value combinations of Pressure (P) and Qvapor (QVA) variables of Hurricane Isabel data
set between time steps 27- 47. Selected value combinations reflect combined activity of the selected variables.

(a) T=30. (b) T=40. (c) T=45.

Figure 8: Temporally salient isosurface visualization of Pres-
sure (P) = 617.04 (blue) and Qvapor (QVA) = 0.00647598 (or-
ange) of Hurricane Isabel data set.

(a) (b)

Figure 9: 9a Variable selection for Turbine data set when λ2
(LAMB) variable is selected, 9b Zoomed in ENTR axis.

some low variation bins (yellow highlighted region) yields the PCP
in Figure 7b, from which a specific value combination is selected.
In Figure 7c the PMI series is depicted. The trend shows that the
magnitude of the PMI values increase over time which is reflected
in the isosurfaces in Figure 8. In Figure 8a, 8b, and 8c isosurfaces
of P = 617.04 (blue) and QVA = 0.00647598 (orange) are shown for
time steps 30, 40 and, 45 respectively. We observe that, as the PMI
values increase, the degree of the association between the value
pair also strengthens which is revealed by their increased overlap.

5.2 Expert Evaluation Using Turbine Data Set
The Turbine data set is generated by a flow simulation TURBO,
where the compressor is undergoing rotating stall [Chen et al. 2008].
It is a multi-block data consisting of 36 blade passages. The resolu-
tion of each passage/block is 151 × 71 × 56 and has five variables:
Density (DENS), Velocity momentum in x/y/z direction (MOM),
and Total energy (TOTENR). These five variables are used to derive
other variables. The simulation was run for 192 time steps.

In a stable state, the tip region of each blade develops a vortex
known as tip vortex. Detailed study of this tip vortex during stall
inception and identification of the associated variable interactions
are essential for the scientist. In order to facilitate domain experts
with a better understanding on the behavior of the tip vortex, we
have computed vortex criterion λ2 (LAMB). In Figure 9a we show
our variable selection interface when λ2 (LAMB) is selected as the
reference variable by the expert. It is observed that variable entropy
(ENTR) displays the highest information variation during the initial
time steps and at time step 6 the shared information between these
two variables become high which can be seen by the change of color
of ENTR axis from initial blue to red in Figure 9b. To investigate
this, ENTR becomes a suitable second variable for analysis and
time steps between 1 − 29 is selected for detailed investigation.
For highlighting this region, in Figure 9a we only show time steps
between 0 − 50 using the time step filter slider.

Figure 10a and 10b show the max and min time volumes of the
selected variables. In Figure 10a, we observe that the the regions
away from the tip show stronger statistical association during the
later time steps, hence more red regions are located away from the
tip region. The min time volume displayed in Figure 10b, show the
opposite trend. Here the tip regions show more opposite activity
during later time steps identified by the reddish yellow regions.
Figure 10c, 10d, and 10e present the PMI fields of three selected
time steps, 5, 15 and 25 respectively. We can see that as time pro-
gresses, more regions along the tip with a complementary activity
appear. In this case study, we see that the complementary region of
interest grows over time which signifies the increase in opposite
information between these two selected variables.

Figure 11a depicts the variation histogram with all positive PMI
and negative SMI values for LAMB. Figure 11b shows when a spe-
cific value combination is picked by brushing the histogram first,
and then filtering from the PCP. Figure 12 presents simultaneous
isosurfaces of the picked value combination (LAMB = −5784.25
(orange) and ENTR = 1.16768 (blue)) for time steps 1, 6, 7, and 15
respectively. Note that, the isosurface of LAMB we visualize here
shows vortices (tip vortex in this case). We find that from time
step 6 on-wards, the LAMB isosurface becomes fragmented which
represents the breakdown of the tip vortices. This is an indication of
the stall inception. In the variable selection interface (Figure 9a), we
observe that time steps 5 − 7 cause sudden change of MI between
these two variables when the tip vortices breakdown. Also, after
the tip vortices break down, the degree of co-occurrence of this
value combination is reduced which can be seen from Figure 11c,
where the magnitude of PMI value gradually decreases.

The domain expert who evaluated our system has more than 25
years of experience in the computational fluid dynamics simulations
and is one of the developers of the TURBO simulation code which
we used for this study. The feedback were collected through several
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(a) (b) (c) (d) (e)

Figure 10: Visualization of PMI fields of Turbine data when variables λ2 (LAMB) and Entropy (ENTR) are selected between
time steps 1 - 29. 10a Time volume with max function, 10b Time volume with min function, 10c PMI field at T=5, 10d PMI field
at T=15, and 10e PMI field at T=25

(a) Variation histogram with all positive PMI values. (b) Interactive PCP. (c) PMI time series of selected value combinations.

Figure 11: Selection of salient scalar value combinations of λ2 (LAMB) and Entropy (ENTR) variables of Turbine data set
between time steps 1-29. Selected value combinations reflect combined activity of the selected variables.

(a) T=1. (b) T=6. (c) T=7. (d) T=15.

Figure 12: Temporally salient isosurface visualization of
variables λ2 (LAMB) = -5784.25 (orange) and Entropy (ENTR)
= 1.16768 (blue) of Turbine data set.

Table 1: Timings for computing PMI fields and aggregation.

Data Set Avg. time per PMI
field creation (secs.)

Avg. time for
aggregation (secs.)

Hurricane Isabel 0.461 0.210
Turbine 3.817 0.325

meetings with the expert during which we explained our system to
the expert in detail. According to the expert, identification of the
breakdown of tip vortices was helpful for a detailed study of stall.
Comparing our tools with the existing tools such as FieldView, the
expert pointed that, our tool was able to provide the information-
theoretic guidance when little knowledge was available. Also, the
expert confirmed that the PMI field based identification of salient re-
gions allowed to locate interesting regions where the variables show
strong or weak statistical association. The expert also mentioned
that the time series based analysis of value combinations provided
a new tool to perform detailed multivariate temporal study on the
scalar values. This helped in identifying salient value combinations
which were either strongly correlated or showed weak association.

The average computation time for the PMI field creation and
their aggregation is shown in Table 1. The computation of all pair
MI for our variable selection interface was done as a pre-processing
step. Note that, since creation of PMI fields are independent for

each time step, they can be generated in parallel which will further
improve the performance.

6 CONCLUSION AND FUTUREWORKS
we have presented an information-theoretic framework for analysis
of multivariate time-varying data sets using their specific value
combinations. We use PMI to measure the information content of
all value combinations and further construct PMI fields allowing
us to analyze multivariate relationships. To capture temporal evo-
lution of the features, we aggregate several PMI fields into a single
field. For identifying temporally salient value pairs, we measure
the temporal PMI variation of each value combination. Interactive
selection of salient value pairs and their isosurfaces provide detailed
information about the temporal interaction of the value pairs. In
the future, we would like to extend our framework for different data
types such as vector fields, and ensemble data for feature analysis.
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