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Abstract—CoDDA (Copula-based Distribution Driven Analysis) is a flexible framework for large-scale multivariate datasets. A common
strategy to deal with large-scale scientific simulation data is to partition the simulation domain and create statistical data summaries.
Instead of storing the high-resolution raw data from the simulation, storing the compact statistical data summaries results in reduced
storage overhead and alleviated I/O bottleneck. Such summaries, often represented in the form of statistical probability distributions,
can serve various post-hoc analysis and visualization tasks. However, for multivariate simulation data using standard multivariate
distributions for creating data summaries is not feasible. They are either storage inefficient or are computationally expensive to
be estimated in simulation time (in situ) for large number of variables. In this work, using copula functions, we propose a flexible
multivariate distribution-based data modeling and analysis framework that offers significant data reduction and can be used in an in situ
environment. The framework also facilitates in storing the associated spatial information along with the multivariate distributions in
an efficient representation. Using the proposed multivariate data summaries, we perform various multivariate post-hoc analyses like
query-driven visualization and sampling-based visualization. We evaluate our proposed method on multiple real-world multivariate
scientific datasets. To demonstrate the efficacy of our framework in an in situ environment, we apply it on a large-scale flow simulation.

Index Terms—In situ processing, Distribution-based, Multivariate, Query-driven, Copula

1 INTRODUCTION

Scientists often measure multiple physical attributes/variables at the
same time in their computational models. These variables are used
to perform various multivariate analyses to gain in-depth insights into
the underlying physical phenomenon. Recent advances in the field of
high-performance computing have enabled scientists to simulate their
computational models at very high resolutions, thus, generating data in
the scale of terabytes or even petabytes. The multivariate nature of the
simulation adds to the complexity of such large-scale scientific datasets,
thereby, possessing significant challenges with respect to performing
multivariate analysis and visualization tasks.

A popular and effective strategy for analyzing and visualizing large-
scale scientific datasets is to first partition the simulation domain and
then store statistical data summaries for each partition [12, 14, 17, 32].
This strategy is particularly useful in many in situ applications to al-
leviate issues like storage overhead and I/O bottleneck for large-scale
data. Such applications create the data summaries in situ (i.e, while
the simulation is still running) and write-out the compact statistical
representation instead of the raw data. These summarized data repre-
sentations are later used to perform post-hoc analysis and visualization
in a much scalable manner (even on commodity hardware). Such sum-
maries, often represented in the form of various statistical probability
distributions (Histogram, Gaussian Mixture Models, etc.) offer two
significant benefits. First, storing probability distributions for local
neighborhood helps reduce the overall storage footprint for large-scale
datasets. Second, many feature-based and query-driven analysis and
visualization tasks rely on computing local data statistics, which makes
such statistical summaries a prudent choice for compact data represen-
tation [15, 24, 35, 47, 48]. However, for multivariate data, where it is
important to preserve the multivariate relationship among variables,
using standard multivariate probability distribution models for data
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summarization does not always yield similar benefits. They are either
not space efficient for the purpose of data reduction (e.g multivariate
histograms) or are computationally very expensive to estimate when the
number of variables increases, thus, overburdening the actual simula-
tion execution (e.g multivariate Gaussian Mixture Models). Therefore,
there is a need to rethink how to model large-scale multivariate data,
such that we still have similar benefits as univariate data summaries.
Moreover, performing multivariate analysis tasks in situ may not al-
ways be helpful, especially, for exploratory analysis tasks [12], where,
in the initial stages scientists usually do not have a clear understanding
of the important variables to analyze and/or the precise value ranges
to query for [16]. Such exploratory analysis involves back-and-forth
interaction with the data, trying various choices before developing a
clear idea. However, it is often computationally prohibitive to run large
simulations in supercomputing environments multiple times for such
exploratory analysis. Therefore, there is a real necessity to have a good
multivariate data summarization solution for large-scale multivariate
simulations, that can preserve the various multivariate relationships
as well as be computationally efficient both with respect to storage
footprint and estimation time.

In this paper, we propose a flexible distribution-driven analysis
framework for large-scale multivariate data that addresses the afore-
mentioned concerns. In the first stage of our framework, to achieve a
compact data representation, we partition the simulation domain and
store the corresponding univariate distributions of the variables for each
partition. The dependency among the variables for each partition is
separately estimated using copula functions. Copula functions offer
a statistically robust mechanism to model the dependency structures
of variables irrespective of the type of univariate distributions used
to model the individual variables. As a result of this flexibility, they
have been widely used in the field of financial modeling [11, 19, 40],
machine learning [18, 31, 49, 55] and recently, in the field of visualiza-
tion, for uncertainty modeling in ensemble datasets [27]. To preserve
the spatial information in our model, we also consider the spatial vari-
ables as extra dimensions along with the physical variables and store
the corresponding spatial distributions in an efficient representation.
In the second stage of our framework, to demonstrate the efficacy of
our proposed multivariate data representation, we perform two broad
categories of post-hoc multivariate analysis tasks using a copula-based
sampling strategy. (a) For effective post-hoc visualization, we pro-
pose a multivariate sampling-based technique to create sample scalar
fields of arbitrary user-specified grid resolutions. (b) For multivariate
query-driven analysis tasks, we propose the computation of probabilis-



tic multivariate queries from our data summaries. Besides evaluating
our proposed data modeling strategy on two large-scale multivariate
datasets, we also test our method in a real-world in situ scenario, by
running it directly with a large-scale CFD simulation. We conduct both
quantitative and qualitative assessment of our generated results and
offer insights into various choices that we make.

To summarize, the major contribution of our work is twofold:

• To reduce the overall storage footprint of large-scale multivariate
data, we propose a statistically robust strategy to model multivari-
ate distributions, which is computationally efficient to be run in
situ during the simulation execution time.

• To perform efficient post-hoc visualization and exploration of
multivariate data, we propose a copula-based sampling strategy
to generate spatial-context preserving sample scalar fields as well
as facilitate query-driven analysis by computing probabilistic
multivariate queries from our proposed data summaries.

2 RELATED WORK

In this section, we focus on some of the previous works related to the
ideas behind our proposed framework.

Distribution-Driven Analysis: Statistical probability distributions
have been widely used in the field of scientific data analysis and visual-
ization [30, 36, 47, 48]. Liu et al. [33] exploited GMMs for stochastic
sampling-based volume rendering on the GPU. Lundstrom et al. [35]
studied the design of transfer functions in direct volume rendering based
on local histograms. Distributions have also been widely used to model
uncertainty in scientific datasets. Jarema et al. [29] used directional
distributions to perform comparative visual analysis of vector field
ensembles. Several methods have been proposed to visualize and ex-
tract uncertain features like isosurfaces [2,43–46], vortices [27,41] and
streamlines [21] from distribution fields. With respect to distribution-
based data summarization for large-scale data, Thompson et al. [56]
proposed Hixels, which stores histogram per data block to preserve the
statistical properties of data. Dutta et al. [14, 15] stored GMMs per
data block to track time-varying uncertain features. Recently, they also
proposed homogeneity preserving data partitioning scheme [17], where
the local data was modeled using a hybrid mixture of Gaussian distribu-
tions and GMMs. Wang et al. [58] stored spatial GMMs per bin of the
local data histogram to achieve good reconstruction results. Almost all
of these distribution-based data summarization works are targeted for
univariate dataset. In this work, we proposed a framework to facilitate
distribution-based data summarization for large-scale multivariate data.

Multivariate Analysis: Multivariate analysis and visualization is
a well-researched topic in the field of scientific visualization [22, 60].
Sauber et al. [52] studied the local correlation coefficients among the
variables to analyze and visualize multivariate data. Bethel et al. [4]
computed correlation fields to perform query-driven analysis with mul-
tivariate data. Gosnik et al [24] used local statistical distributions to
improve query-driven analysis for multivariate data. Jänicke et al. [28]
adapted local statistical complexity to identify informative regions in
multivariate data. Creating efficient multivariate distributions have
always been a challenging task. Various compact representations of the
multivariate joint histogram have been proposed to tackle the curse of
dimensionality [6, 34].

In situ Application: With increasing sizes of scientific simulation
data, in situ data processing is becoming increasingly popular for scal-
able analysis and visualization tasks. Bauer et al. [3] performed a
comprehensive survey of the in situ visualization techniques. Direct vi-
sualization of the simulation data can be performed with LibSim using
VisIt [59] and CATALYST using Paraview [20]. Vishwanath et al. [57]
in their work, GLEAN, improved the process of in situ analysis. Yu et
al. [64] performed in situ visualization of combustion data. Woodring
et al. [62] proposed an in situ eddy census for ocean simulation models.
However, exploratory data analysis tasks, which require back-and-forth
interaction with the raw data are not feasible with pure in situ tech-
niques [16]. To address such limitations, recently, a new in situ practice
has been gaining popularity, where, large-scale data is statistically sum-
marized and later used for post-hoc analysis using the data summaries
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Fig. 1: A schematic overview of the stages of our proposed method.

rather than the raw data [12, 32]. An in situ image-based approach was
used by Ahrens et al. [1] for post-hoc feature exploration. Woodring
et al. [61] adopted a sampling-based method to visualize Cosmology
data. To facilitate interactive post-hoc visualization of particle data, Ye
et al. [63] computed probability distribution functions in situ. Dutta et
al. [14, 17] performed in situ estimation of combinations of GMMs to
create data summaries, which are later used for post-hoc feature explo-
ration. To the best of our knowledge, similar approaches to facilitate
post-hoc multivariate analysis on large-scale multivariate data does not
exist. In this paper, we propose a new multivariate distribution-based
data modeling strategy to address this scenario.

Copula-based Statistical Analysis: The relationship between a
generic multivariate function and a copula function was first formalized
by Sklar in 1959 [54]. Since then it has been widely used as a robust
statistical tool for multivariate data modeling. In the article titled,
Coping with Copula [53], Schmidt provides a detailed explanation
of the workings of coupla functions and their potential application in
various fields. Copula functions have been widely used in the field
of financial modeling and risk analysis [11, 19, 39, 40]. Over the past
few years, copula functions, especially, Gaussian copula, have been
gaining popularity in the field of machine learning as well, for the
purpose of modeling high-dimensional distributions [18, 49]. Machine
learning approaches like dimensionality reduction [25, 26], mixture
modeling [23,55], component analysis [31,37] and clustering [50] have
benefited from the flexibility offered by copula functions. Recently,
in the field of visualization, Hazarika et al. [27] used Gaussian copula
functions to model the local neighborhood uncertainty in ensemble
datasets with mixed distribution models. Using their copula-based
strategy, they visualized uncertain features like isosurfaces and vortices
in ensemble datasets. In our proposed multivariate data summarization
framework, we use Gaussian copula function to tackle the challenges of
scalable multivariate analysis and visualization in large-scale simulation
data.

3 SYSTEM OVERVIEW AND MOTIVATION

Overview: Figure 1 provides a schematic overview of the different
stages of our proposed framework. The two main stages are: (a) data
modeling/summarization, which can be performed in situ alongside the
simulation and (b) subsequent post-hoc multivariate analysis using the
constructed data summaries. The data modeling stage consists of first
partitioning the simulation domain and then modeling the individual
variables in each partition using suitable univariate distribution models.
The dependency among the variables is modeled separately using cop-
ula functions. The dependency parameters and the respective univariate
distributions, computed in situ, together comprises our proposed multi-
variate data summary, which gets written-out to the secondary storage
instead of the raw simulation data. In the latter stage, copula-based
sampling strategies are used to facilitate various post-hoc multivariate
analysis and visualization tasks using the stored data summaries.

Motivation: Distribution-based data summarization is an effective
strategy for dealing with large-scale scientific data. Because of their
compact representations, statistical distributions like Histograms, Gaus-
sian Mixture Models (GMM) and Gaussian distributions are commonly
used for this purpose, as compared to less compact models like Kernel
Density Estimates (KDE). However, it becomes increasingly difficult
to work with their corresponding standard multivariate distribution
representations when the dimensionality increases. Some potential dis-
advantages of using standard multivariate distributions for data summa-



rization in large-scale multivariate data can be categorized as follows:

1. Storage: The storage footprint of a multivariate histogram can
increase exponentially with the number of variables, making them
ineffective for data summarization. Although a sparse represen-
tation of the multivariate histogram can reduce the exponential
storage size, still, compared to the size of the raw data it is not use-
ful for the purpose of data reduction as shown in our evaluations
in Section 6. Moreover, the size of such sparse representations
is sensitive to how the data is distributed and the number of his-
togram bins used.

2. Estimation Time: GMM is another popular data summarization
alternative because of its compact representation and good mod-
eling accuracy. However, the estimation of multivariate GMM
using expectation-maximization is computationally very expen-
sive compared to its univariate counterpart. The computation time
increases rapidly with the number of variables. Therefore, despite
the storage advantages, the high estimation times of multivariate
GMMs will overshadow any I/O bottleneck alleviation, making
them infeasible for multivariate data summarization in in situ
applications.

3. Flexibility: Standard multivariate distributions are very rigid
with respect to the assumptions made about their corresponding
univariate distributions. For example, in a multivariate histogram,
the individual variables are also histograms (i.e, marginal his-
tograms) and a multivariate GMM with 3 modes always assume
that the individual variables are modeled by univariate GMM
with 3 modes. However, if a certain variable can be modeled by
a simple Gaussian distribution with sufficient confidence, then,
by using a Gaussian distribution (which requires storing just two
parameters) instead of a distribution with more parameters to
store, we can achieve higher levels of data reduction without com-
promising on quality, as shown by Dutta et al. [17] on univariate
data. Such flexibility is not offered implicitly by the standard
multivariate distributions.

In order to address the above issues and design an effective multi-
variate data summarization technique, we propose the use of copula
functions to model the multivariate distributions rather than using the
standard multivariate distribution models. Copula functions offer a
statistically robust mechanism to decouple the process of multivariate
distribution estimation into two independent task: univariate distri-
bution estimation and dependency modeling [53]. As a result, the
exponential cost of storage and/or distribution estimation time can be
reduced significantly because we can independently model the indi-
vidual variables using arbitrary distribution types, while the copula
function captures the dependency among them separately.

4 COPULA-BASED MULTIVARIATE DISTRIBUTION MODELING

In this section, we explain in detail the first stage of our framework, i.e,
multivariate data modeling using copula. We also provided the basic
mathematical foundations necessary to understand the application of
copula functions for multivariate modeling.

Copula: By definition, a copula function or a copula in general,
is a multivariate cumulative density function (CDF) whose univariate
marginals are uniform distributions. Mathematically, C : [0,1]d→ [0,1]
represents a d-dimensional copula (i.e., d-dimensional multivariate
CDF) with uniform marginals. For d-uniform random variables
u1, ...ud , it can be also be denoted as C(u1, ...ud).

Sklar’s theorem [54] formally established that every joint CDF in Rd

implicitly consists of a d-dimensional copula function. If F is the joint
CDF and F1,F2, ...Fd are the marginal CDF’s for a set of d real valued
random variables, X1,X2, ...Xd respectively, then Sklar’s theorem can
be formally represented as;

F(x1,x2...xd) =C(F1(x1),F2(x2), ...Fd(xd))

=C(u1,u2, ...ud) (using Fi(xi) = ui ∼U [0,1])
(1)
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Fig. 2: Property of CDF: (a) If we know the inverse CDF F−1
X of a

distribution of variable X , we can always transform uniform samples
to follow distribution of X (b) The output of a continuous CDF FX , is
always a uniform distribution U [0,1]

where, the joint CDF F is defined as the probability of the random
variable Xi taking values less than or equal to xi i.e;

F(x1,x2, ...xd)
def
= P(X1 ≤ x1,X2 ≤ x2, ...Xd ≤ xd) (2)

In the above equations, xi is a specific realization of the random variable
Xi. Using the universal CDF property (Figure 2b), that the output of
any continuous CDF is a uniform distribution, Equation 1 is equated to
the standard copula notation. Here, similar to the random variable Xi,
ui represents the realizations of a uniform distribution U [0,1].

If f is the multivariate probability density function (PDF) of the
CDF F and fi, the corresponding univariate PDFs of the CDFs Fi, then
in terms of probability density functions Equation 1 can be written as
follows:

f (x1,x2...xd) = c(F1(x1),F2(x2), ...Fd(xd))
d

∏
i=1

fi(xi) (3)

where,

c(u1, ...ud) =
∂C(u1, ...ud)

∂u1...∂ud
(4)

Therefore, from Equations 1 and 3 we can say that to represent any
multivariate probability density function we need the following two
sets of information: (a) the univariate CDFs Fi of all the variables, and
(b) corresponding Copula function C(u1, ...ui).

Copula-based multivariate distribution modeling techniques gener-
ally approximate the function C(.) using standard copula functions [53].
The most common among all the available copulas is the Gaussian cop-
ula function, which is derived from the standard multivariate normal
distribution. For the purpose of data reduction in scientific datasets,
Gaussian copula is well-suited because it requires storing only the cor-
relation matrix of the data, which can be efficiently computed in an in
situ environment.

Gaussian Copula: To set in terms of the above explanations, if F is
a standard normal distribution of d-dimensions, then the corresponding
C(.) in equation 1 is a Gaussian copula. For a d-dimensional standard
normal distribution Nd(0,ρ), with zero mean vector 0 and correlation
matrix ρ the corresponding Gaussian copula function CG

ρ with the
parameter ρ can be denoted as;

CG
ρ (u1, ...ud) = Φρ (Φ

−1(u1), ...Φ
−1(ud)) (5)

where, Φ−1 represents the inverse CDF of a standard normal distri-
bution and Φρ represents the CDF of a multivariate standard normal
distribution with correlation matrix ρ . Standard normal distributions
have well-known closed-forms for the CDF functions, therefore, we can
easily compute the Gaussian copula function using equation 5, provided
we know the correlation matrix ρ . The final multivariate distribution,
thus obtained, is often termed as meta-Gaussian distribution since the
dependency structure is Gaussian but the marginals can be arbitrary
distributions.
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Fig. 3: Copula-based sampling example: (a) Joint distribution of the original bivariate samples with correlation coefficient -0.9. (b) Step 1:
Generate new bivariate samples from a bivariate standard normal distribution. (c) Step 2: Construct the Gaussian copula with uniform marginals.
(d,e) Step 3: Final bivariate samples with arbitrary univariate distribution types. A histogram representation for Y in (d) and a GMM representation
for Y in (e), while, X is being modeled by a Gaussian distribution in both the scenario.

To summarize, the multivariate distribution-based data modeling
stage of our proposed framework involves storing the desired univari-
ate distributions for the individual variables and their Gaussian copula
parameters (i.e, ρ) for each spatial partition in the simulation domain.
Since, our objective is to reduce storage footprint, instead of storing the
complete correlation matrix, ρ , which is a symmetric matrix, we store
only the pairwise correlation coefficient of all the variables, which con-
stitutes the lower and the upper triangles in the matrix. Therefore, for
multivariate data with n variables, the overall storage of our proposed
data summarization for a single partition can be written as;

S =
n

∑
i=1

mi +

(
n
2

)
(6)

where, mi is the storage footprint of the univariate distribution chosen
for the i-th variable, while

(n
2
)

is the cost of storing the Gaussian copula
parameter. We can optimally choose univariate distribution models for
individual variables depending on factors like storage footprint (i.e.,
mi) and computation times and estimate them in parallel.

Spatial Distributions: By storing only the value distributions of the
physical variables in the simulation, we cannot retain the spatial context
in the data. Spatial information is a vital property of scientific datasets
and many analysis and visualization tasks require spatial queries and
context of the data. Therefore, in our work, besides considering the
physical variables, we also consider the spatial variables (i.e., x, y and z
- dimensions) as part of our multivariate system. In other words, the ef-
fective number of variables in our system is n= np+ns, where np is the
number of physical variables computed in the simulation and ns is the
number of spatial variables (3 for a three-dimensional spatial model).
We store the spatial variables in the form of spatial distributions. A
benefit of using our copula-based flexible framework for storing the
spatial distributions is that, for a regular partitioning, which is a pop-
ular partitioning scheme, we can use uniform distributions to model
the spatial variables. Since copula functions have uniform marginals
implicitly, we do not have to effectively store any extra information for
the spatial distributions apart from their correlation coefficients with all
the other variables. In the next section, we demonstrate the advantage
of persevering spatial information for effective post-hoc analysis.

5 POST-HOC MULTIVARIATE ANALYSIS AND VISUALIZATION

In the second stage of our framework, to facilitate various post-hoc mul-
tivariate analyses using our constructed multivariate data summaries,
we propose multivariate sampling-based visualization and multivariate
query-driven analysis strategies. The key to performing such analysis
in a flexible and scalable manner is to have an efficient copula-based
sampling strategy. Therefore, we first explain in detail, with an simple
bivariate example, the steps involved in sampling from a Gaussian
copula-based multivariate model.

Copula-based Sampling Strategy: Consider a multivariate sample
of two random variables X and Y , with a strong negative correlation
(ρ =−0.9). The original joint distribution of the two variables is shown
in Figure 3(a). Let FX and FY be the CDFs of the desired univariate
distribution respectively. As mentioned in the previous section, these
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Fig. 4: Advantage of spatial distributions: (a) Original scalar field of
resolution 20×20. (b) Scalar field resampled from a histogram, without
any spatial information. (c) Samples generated by the copula-based
strategy with spatial distributions. (d) Density field constructed from
the copula-based samples in (c).

univariate distributions can be of any arbitrary type (Histogram, GMM
or Gaussian). Given FX , FY and ρ(=-0.9), the three steps involved in
our sampling method are as follows:

• Step 1: Generate new multivariate samples from a standard bi-
variate normal distribution with the correlation matrix ρ . Fig-
ure 3(b) shows the scatter plot view of the generated samples. In
this step, the samples only preserve their correlation, while the
univariate marginals are standard normal distributions with mean
value 0 and standard deviation of 1.

• Step 2: The output of a CDF always follow a uniform distribution
as illustrated in Figure 2(b). Using this property, we transform the
bivariate samples generated in Step 1 to a bivariate uniform distri-
bution as shown in Figure 3(c). By equation 5, these transformed
samples, generated from a bivariate standard normal distribution
represent the corresponding bivariate Gaussian copula. The de-
pendency structure between the variables is still preserved but the
marginals are uniform distributions.

• Step 3: Finally, we transform the uniform distributions of the
two variables to the desired distribution types using the inverse
functions of the precomputed CDFs FX and FY . If we know the
inverse CDF of a distribution, we can always transform uniform
samples to the corresponding distribution, a fact, illustrated by
Figure 2(a). As shown in Figure 3(d,e), the final bivariate samples
(with sample ρ = −0.88) closely represent the initial bivariate
samples. Since the transformation in this step takes place from
uniform marginals, we can use arbitrary target univariate distri-
bution for transformation. For example, FX can be a Histogram
(Figure 3(d)) or a GMM (Figure 3(e)), while FY is a Gaussian in
the two alternatives.

For a d-dimensional multivariate system, we start Step 1 above
with a d-dimensional standard normal distribution. Using this 3-step
sampling strategy, we are able to generate multivariate samples from
our proposed multivariate data summaries that preserve the correlation
among the variables, an important property desired in any multivariate
analysis task.

Advantage of Spatial Distributions: The multivariate samples
generated from our proposed data summaries can be denoted as
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Fig. 5: Arbitrary grid resolutions for the sample scalar fields.

(v1, ...,vnp ,x,y,z), where, vi’s are the sample values for the np phys-
ical variables and (x,y,z), the corresponding sample location in the
spatial domain. The spatial information associated with every sample
not only facilitates post-hoc analysis but also strengthens dependency
modeling accuracy of the copula functions. Figure 4 shows the results
of a simple experiment to highlight the advantage of storing spatial
distributions along with the value distributions of the physical variables.
Consider, a small two-dimensional scalar field of resolution 20×20,
with values linearly increasing along the diagonal from the top-left to
the bottom-right corner of the field, as shown in Figure 4(a). Let, HV be
the histogram of the scalar value (say variable V ). By sampling HV , we
get possible values of V , but without any spatial context. Therefore, if
we visualize the generated random samples we get a noisy scalar field
with similar value distribution, but inaccurate spatial information as
shown in Figure 4(b). On the other hand, if we consider this as a three-
dimensional multivariate system with variables V , X and Y , where X
and Y are the spatial variables in the field, we are able to retain the
spatial information in our generated samples (Figure 4c). Figure 4(d)
shows the density field for the generated particle samples, where we
are able to generate more accurate statistical realizations of the initial
field. Moreover, since it is a regular Cartesian grid we can use uniform
distribution to model X and Y .

5.1 Multivariate Sampling-based Visualization
Visualizing the scalar fields of the individual variables in the form
of volumes or surfaces is a common practice among scientists while
dealing with multivariate data. In order to facilitate such visualiza-
tions using our proposed multivariate data summaries, we generate
statistical realizations/samples from our data representation to create
multivariate scalar fields that can be visualized as a replacement of
the raw data. We generate multivariate samples for each partition in
the spatial domain using our copula-based sampling strategy. Since
the generated multivariate samples contain spatial locations, we can
create the sample scalar fields by performing particle density estima-
tion at the grid points [42]. For each multivariate sample, we assigned
the distance-weighted average of the physical variables to the nearest
grid point. The generated sample scalar fields can be in any arbitrary
user-specified grid resolutions as illustrated in Figure 5. As a result,
depending on the computational resources available on the analysis
machine, users can specify a high or a low-resolution sample grid to
visualize.

Algorithm 1 Generating a sample scalar field

1: D ← [D1, ...Dp] . list of distributions for p partitions
2: S j[Tx,Ty,Tz]← 0 . sample scalar field of size (Tx,Ty,T z)
3: sumO fWeights[Tx,Ty,Tz]← 0
4: for all Di in D do
5: S [N]← generateMV samples(Di,N) . sample size N
6: for all s in S [.] do . s∼ (s1, ..,sn,sx,sy,sz)
7: (gx,gy,gz)← nearestGridLocation(sx,sy,sz)
8: dis← distance({gx,gy,gz},{sx,sy,sz})
9: weight← 1/dis

10: S j[gx,gy,gz] += (s j ∗weight)
11: sumO fWeights[gx,gy,gz] += weight
12: S j[.] /= sumO fWeights[.] . the final sample scalar field

The pseudo-code in Algorithm 1 shows the steps involved in gen-
erating a sample scalar field. We create a sample scalar field S j of

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Two dimensional slices (250×250) of Isabel dataset, partitioned
into 10× 10 blocks: (a) Original Pressure field. (b) Pressure field
sampled from multivariate histogram. (c) Pressure field sampled using
copula-based strategy. (d) Original Velocity field. (e) Velocity field
sampled from multivariate histogram. (f) Velocity field sampled using
copula-based strategy. (g) Scatter-plot view of original field. (h) Scatter-
plot view of the fields sampled from multivariate histogram. (i) Scatter-
plot view of the field sampled using copula-based strategy.

user-specified target resolution (Tx,Ty,Tz) for the jth variable in a sys-
tem with n variables. For each multivariate data summary Di (corre-
sponding to each partition), we generate N multivariate samples using
our copula-based sampling strategy as explain above, via the function
generateMV samples(.) in line 5 of Algorithm 1. We then compute the
distance-weighted average of the sample values of the physical vari-
ables (here s j) to eventually create the final statistical realization of the
scalar field, i.e, S j. The number of samples generated, N, depends on
the size of each partition and is generally kept higher than the number
of grid points in the partition to get reliable results.

Using a simple two-dimensional real-world multivariate data, we
demonstrate the effectiveness of our proposed method. We consider 2D
slices (resolution 250×250) of Pressure and Velocity variables from the
Hurricane Isabel dataset. The full volumetric datasets with 11 physical
variables will be used later for extensive evaluation in Section 6. The
original Pressure and Velocity scalar fields are shown in Figure 6(a)
and (d) respectively, while Figure 6(g) shows the scatter-plot view
of how the two variables are related. As can be seen, there is a non-
linear relationship between the two variables. However, partitioning the
spatial domain into smaller blocks help break down the complex global
multivariate relationship into relatively simpler local relationships [38,
52], which can be accurately modeled by the Gaussian copula. In this
example, we partition the spatial domain into regular blocks of size 10×
10. To compare our copula-based strategy with a standard multivariate
distribution based strategy, we compute multivariate histograms for the
two variables Pressure and Velocity across all the partitions. Using our
proposed framework, we only compute the univariate distributions of
Pressure, Velocity and the two spatial dimensions X and Y . We use
univariate histograms for Pressure and Velocity (with similar bin counts
as the multivariate histogram, i.e., 64), while uniform distributions
for X and Y . Also, we store the 6, i.e.,

(4
2
)

correlation coefficients to
capture the correlation matrix (parameter for Gaussian copula function).
Figure 6(b) and (e) show the results of the sample scalar fields generated



(a) (b)

Fig. 7: Multivariate Query-Driven Analysis: (a) The deterministic
results of the query −2000 < Pressure < 500 and 40 <Velocity < 50
in the original raw data. (b) Probabilistic result generated by our
methods, i.e., P(−2000 < Pressure < 500 AND 40 <Velocity < 50).

with the multivariate histograms, while Figure 6(c) and (f) show the
results from our copula-based sampling. The sample scalar fields are
in the same resolution as the initial raw slices (250×250). Figure 6(h)
and (i) show the corresponding scatter-plot views for the two cases. As
can be seen, the copula-based sample scalar fields are able to closely
resemble the complex multivariate relationship between Pressure and
Velocity compared to just using a standard multivariate histogram.
Therefore, the flexibility of adding the spatial information as extra
variables in our multivariate model helps us to not only create a more
accurate scalar field for the individual variables but also reliably capture
their multivariate relationships.

5.2 Multivariate Query-Driven Analysis

Query-driven analysis methods are a class of highly effective discovery
visualization strategies [51]. They reduce the computational workload
and the cognitive stress in large-scale scientific data by selecting regions
of interest and filtering out the other non-pertinent regions. By focusing
analysis and visualization efforts only on the regions of interest, such
query-driven techniques make the work-flow of scientists more man-
ageable and effective. For example, if scientists are interested in only
a certain value range for two variables, a query-driven method helps
them to focus only on the parts of the data that specifically meet their
multivariate query, instead of looking at the entire simulation domain.
They can further drill down into analyzing how the other variables be-
have in the region of interest to gain more insights. Many query-driven
strategies rely on computing local data statistics to perform efficient
query search operations [7, 24]. Therefore, the use of statistical data
summaries is a wise choice for data reduction in large-scale simulations
because it can easily facilitate such query-driven strategies. In this
section, we explain in detail the process of performing multivariate
query-driven analysis using our proposed multivariate data summaries.

To illustrate our copula-based multivariate query-driven analysis,
consider the same 2D slices of the Isabel data used in Section 5.1.
Consider performing a query on the Pressure range of [−2000Pa−
500Pa] and Velocity range of [40ms−1− 50ms−1]. To compute the
probability of seeing a multivariate value in this queried range, we
selectively sample the stored multivariate distributions using our copula-
based sampling method. To expedite the process, for each partition,
we first check whether the corresponding univariate distributions of
the queried variables satisfy the individual query ranges or not. We
generate multivariate samples using our copula-based strategy only
for the partitions which satisfy this initial check. As mentioned in the
previous section, the multivariate samples generated in our method
retains the spatial context in the form of spatial locations for each
sample. By creating a spatial density field of the generated samples
satisfying the query, we can produce the probabilistic multivariate
query field, which highlights the probability of the specified multivariate
query (i.e., P(−2000 < Pressure < 500 AND 40 < Velocity < 50)).
Figure 7(a) shows the region which satisfies the query in the original
raw data. Figure 7(b) shows the corresponding probability density field
for the query with probability values ranging from 0 to 1. A high value
indicates a high possibility of seeing co-occurring Pressure and Velocity
values in the specified ranges.

Table 1: Distribution Storage and Estimation Time

Dataset
(Resolution) #variables Raw

Size
(MB)

block
size

MV Histogram MV GMM Hybrid
+ Copula

Size
(MB)

Est.
Time (s)

Size
(MB)

Est.
Time (s)

Size
(MB)

Est.
Time (s)

Isabel
(250x250x50) 11 137.5

5x5x5 173.1 106.1 23.7 2623.6 16.2 203.9
7x7x7 152.5 111.5 8.13 4671.6 5.8 205.4

10x10x10 113.7 98.2 2.95 5006.2 2.2 230.2

Combustion
(480x720x120) 3 497.7

5x5x5 579.4 311.7 55.7 4077.7 39.2 573.3
7x7x7 509.1 322.4 39.7 5150.4 14.3 561.7

10x10x10 434.2 305.7 27.8 9708.5 5.1 583.6

(a) Storage Footprint (b) Distribution Estimation Time

(c) RMSE for Isabel (d) RMSE for Combustion

Fig. 8: Quantitative evaluation results for block size of 53.

6 QUANTITATIVE AND VISUAL EVALUATION

To demonstrate the effectiveness of our proposed multivariate data sum-
marization strategy, we first evaluated it on two off-line multivariate
data before applying it on a full-scale in situ simulation. We used the
following off-line datasets: (a) Hurricane Isabel WRF model data of
resolution 250×250×50, with 11 physical variables, which models
the development of a strong hurricane in the West Atlantic region, and
(b) Combustion data of resolution 480× 720× 120, with 3 physical
variables, modeling a turbulent combustion process. For the purpose of
our evaluation, we considered a single time step of the above datasets
(time step 20 for Isabel and time step 30 for Combustion). All evalua-
tions were performed on a standard workstation PC (Intel i7 at 3.40GHz
and 16GB RAM).

Experiment Setup: In our experiment, we used non-overlapping
regular partitioning scheme of equal block sizes to partition the sim-
ulation domain. Multivariate data summaries were then created for
individual partitions. We tested our proposed summarization model
against standard multivariate distribution models like multivariate his-
togram (sparse representation with 32 bins of equal width for all the
dimensions) and multivariate GMM of 3 modes (with full covariance
matrix). In our proposed flexible framework, to model the individual
variables, we used a hybrid combination of univariate distributions
involving GMMs, Gaussian distributions and uniform distributions,
while, Gaussian copula was used to model the dependency among
these hybrid distributions. For each partition, we performed a normality
test (D’Agostino’s K-squared test [13]) on the individual variables. For
variables with a high certainty of following a normal distribution, we
used a Gaussian distribution, else GMM of 3 modes was used, whereas,
uniform distributions were used to model the spatial variables (i.e., x, y
and z dimensions) for each partition. Therefore, the effective number
of variables in our method for Isabel dataset is 14 (11 physical + 3
spatial) and for the Combustion dataset is 6 (3 physical + 3 spatial).

Storage Footprint: The storage size of our proposed multivariate
data summaries was significantly less as compared to the standard mul-
tivariate distributions, even when including the 3 spatial variables and
extra indexing information for recording the hybrid univariate distri-
bution types at each partition. Figure 8(a) compares the storage sizes
for the three different models in the Isabel and Combustion datasets
for block sizes of 53. Clearly, multivariate histogram is not a good
alternative for the purpose of data-reduction. Also, the fact that in
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Fig. 9: Results from Isabel dataset for block size 53: (a) Original
Pressure scalar field. (b) Pressure field constructed from multivariate
histograms representation. (c) Pressure field constructed from multivari-
ate GMM of 3 modes. (d) Pressure field created by our copula-based
model, which retains the spatial context in the multivariate samples.
(e) Region in the original raw data corresponding to the multivariate
query of −2000 < Pressure < 500 and 40 < Velocity < 50. (f) The
probability field generated by our copula-based strategy for the similar
query, i.e., P(−2000 < Pressure < 500 AND 40 <Velocity < 50).

our hybrid model, we selectively used GMMs of 3 modes and single
Gaussian distributions, helps us achieve better storage size than the
standard multivariate GMM (of 3 modes).

Estimation Time: We compared the estimation times of the three
data summarization models for the two datasets. As shown in Fig-
ure 8(b), the distribution estimation time for multivariate GMM is
significantly high compared to the other models. As a result, despite
having good storage advantages, multivariate GMMs will greatly in-
crease the simulation time when used in in situ applications. On the
other hand, estimating multiple univariate distributions is comparatively
less expensive, because of which our proposed multivariate data model-
ing strategy performed significantly better. The estimation time of our
model included the time for normality test, the individual univariate
distribution estimation and the Gaussian copula parameter computation
time. Table 1 reports the storage sizes and estimation times for different
block sizes.

Accuracy: Using the three data summarization models, we created
sample scalar fields of resolutions similar to the original raw data. In
the case of multivariate histogram and multivariate GMMs, for each
grid location in the reconstructed field, we draw random samples from
the distribution corresponding to the block (partition) that the grid lo-
cation belongs to. The value of this sample is assigned to the specific
grid location. This approach is similar to the reconstruction strategies
employed in other univariate distribution-based data summarizations
works [17, 58]. On the other hand, we employed the copula-based
strategy explained in Section 5.1 to generate the sample scalar fields
using our proposed data summaries. To compare the accuracies of the
sample scalar fields, we computed their normalized root mean squared
error (RMSE) with the corresponding original raw fields. Figure 8(c)
and (d) show the RMSE results for three variables in both the datasets.
The results of all the 11 variables for Isabel is provided in the supple-
mentary material. To evaluate the multivariate relationship preserved by

(a) (b) (c)

(d) (e)

Fig. 10: Results from Combustion dataset for block size 53: (a) Original
mixfrac scalar field. (b) Mixfrac field constructed from multivariate
GMM of 3 modes. (c) Mixfrac field created by our copula-based model.
(e) Region in the original raw data corresponding to the multivariate
query of 0.3 < Mix f rac < 0.7 and y oh > 0.0006. (f) The probability
field generated by our copula-based strategy for the similar query, i.e.,
P(0.3 < Mix f rac < 0.7 AND y oh > 0.0006).

(a) Isabel arbitrary grid (b) Combustion arbitrary grid

(c) Isabel block sizes (d) Combustion block sizes

Fig. 11: (a) and (b) show the consistent RMSE values for different grid
resolutions of the sample scalar field, when block size is 53. (c) and (d)
show the trend of increasing RMSE values with increasing block-sizes.

the models, we computed the RMSE values of the sample correlation
coefficients of all the pairs of variables with the original correlation
coefficients across all the partitions. As shown in the last stack of
bar-charts in Figure 8(c) and (d), the sample correlation errors from
the three different models are mostly similar, this is because, the use
of copula is just another way of modeling multivariate distributions.
Figure 9(a-d) show the visual comparison of the sample scalar field gen-
erated for the Pressure variable in Isabel dataset, while Figure 10(a-c)
show the results for the Mixfrac variable in Combustion dataset (more
results are provided in the supplementary material). The accuracy of
scalar fields generated by our copula-based sampling strategy is better
than the standard models because we were able to retain the spatial
information in the form of spatial distributions. Therefore, based on the
above three criteria, i.e., storage footprint, estimation time and accu-
racy, we can say that our proposed flexible multivariate data summary
framework is better suited for the analysis of large-scale multivariate
data than the corresponding standard multivariate distributions.

Multivariate Query: To facilitate query-driven analysis tasks, we
computed the probability field for a given multivariate query using our
hybrid model. Figure 9(e) shows the deterministic query result on the
original raw data for the multivariate query −2000 < Pressure < 500
and 40<Velocity< 50 for the Isabel dataset. Figure 9(f) shows the cor-
responding probability field generated for the same query using our mul-
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Fig. 12: Post-hoc analysis of the jet turbine dataset. (a) Original Entropy field. (b) Sample scalar field of Entropy. (c) Original Uvelocity field. (d)
Sample scalar field of Uvelocity. (e) Original Temperature field. (f) Sample scalar field of Temperature. (g) Probabilistic multivariate query result
i.e., P(Entropy > 0.8 AND Uvel <−0.05) (h) Isosurface for probability value 0.5. (i) Distribution of Temperature values in the queried region
i.e., P(Temp|Entropy > 0.8 AND Uvel <−0.05). (j) Distribution of correlation coefficients between Entropy and Temperature for the queried
region. (k) Distribution of correlation coefficients between Uvelocity and Temperature for the queried region.

tivariate data summaries (i.e., P(−2000 < Pressure < 500 AND 40 <
Velocity < 50)). As a result of the spatial information preserved in our
model, we were able to successfully identify the region of interest for
the specific query along with uncertainty information, provided in the
form of the probability values. The regions with high probability value
have higher chances of satisfying the given query. Based on the query
results, scientists can further analyze the properties of other variables
in this spatial range (more results are provided in the supplementary
material). Similarly, Figure 10(d) shows the deterministic query results
on the original Combustion raw data for the query 0.3 < mix f rac < 0.7
and y oh > 0.0006, while, Figure 10(e) shows the corresponding prob-
abilistic query (P(0.3 < mix f rac < 0.7 AND y oh > 0.0006)).

Arbitrary Grid Resolution: The sample scalar fields generated
by our method can be created in arbitrary user-specified grid resolu-
tions because of the spatial information retained in the multivariate
samples. As a result, users have the flexibility to create a high or a
low-resolution sample field directly from the summaries depending
on the computational resources available at their disposal for analysis.
To test the results of the arbitrary grid resolutions, we computed the
RMSE scores of the generated sample scalar fields with that of the
corresponding scalar fields sub-sampled from the original raw field.
Figure 11(a) shows the normalized RMSE scores for three variables in
the Isabel dataset. For a single variable, each bar corresponds to the
RMSE score of the corresponding grid resolution. The sub-sampled
scalar field generated from the original raw data is considered as the
baseline for each resolution size. Similarly, Figure 11(b) shows the
results for Combustion dataset. The RMSE scores remain consistent
across different grid resolutions for the individual variables.

Effect of block sizes: We also studied the effect of partition block
sizes (i.e, granularity of domain partitioning) on the overall storage size,
estimation time and RMSE values. With larger block sizes, the overall
storage footprint decreases but the overall estimation time increases.
This increase of estimation time is more significant with multivariate
GMMs. Table 1 shows the storage and estimation times for different
block sizes for the two test datasets. Also, with larger block sizes the
overall RMSE values for the analysis results increases. Figure 11(c)
and (d) show the increasing trend of RMSE values for some of the
individual variables and the sample correlation coefficients in Isabel
and Combustion datasets respectively. The number of multivariate
samples generated from each multivariate data summary also depends
on the partition block size. To get statistically reliable results the
number of samples is generally larger than the number of grid points
in each partition. We tested with different sample sizes and observed
that with increasing sample sizes the overall accuracy does not differ

significantly after a certain size. For our case, we used sample sizes of
500, 1000 and 1500 for block sizes of 53, 73 and 103 respectively.

7 IN SITU APPLICATION AND DOMAIN EXPERT FEEDBACK

Based on the positive evaluation results in off-line multivariate data,
next, we applied our proposed flexible multivariate data summarization
framework on a real-world in situ environment. Using our proposed
model, we want to facilitate flexible and scalable multivariate analysis
of data generated in a large-scale computational fluid dynamics (CFD)
simulation code, TURBO [9, 10]. TURBO, developed at NASA, is
a Navier-Stokes based, time-accurate CFD simulation code to study
transonic jet engine compressors at high resolutions. Domain experts
compute various physical variables to study and analyze the inception
of flow instability across the compressor blades. Flow instability can
lead to potential stalls in the engine, which can damage the blades.
Therefore, it is important to understand and analyze what roles the
different variables play in the creation of such unstable flow structures.
However, the computational cost and the amount of data produced from
a single simulation is quite significant, which makes such multivariate
analysis very unwieldy and overwhelming for the scientists.

For this case, scientists were interested in analyzing the multivariate
relationship among the variables Entropy, Uvelocity and Temperature.
We computed our proposed multivariate data summaries for partitions
of size 53 across the simulation domain. Based on the results of nor-
mality test, we used either a Gaussian distribution or a GMM (with
3 modes) to model the univariate distribution of individual variables.
The spatial variables were modeled using uniform distributions, while
Gaussian copula captured the dependency structure among all these
variables (i.e., 6, 3 physical + 3 spatial). The in situ simulation was
performed in a cluster (Oakley [5], at the Ohio Supercomputer Cen-
ter) containing 694 nodes with Intel Xeon x5650 CPUs (12 cores per
node), and 48 GB of memory per node. The simulation was run on
328 cores in total. We executed 2 full revolutions of the jet turbine,
resulting in 7200 time steps. In situ multivariate data summarization
was performed every 10th time step, thereby storing 720 time steps.
We created our hybrid multivariate data summaries by accessing the
simulation memory directly without additional data copies. The domain
of the compressor consists of 36 blade passages, each with a spatial
resolution of 151×71×56. The simulation outputs raw data in multi-
block PLOT3d format of size 690 MB per time step, which accounts for
496.8 GB for just two 2 revolutions. On the other hand, our proposed
multivariate data summaries result in only 19.6 GB of total storage
footprint. Table 2 shows the overall simulation times for our in situ
application. Our multivariate data summary creation process requires



Table 2: In situ Performance

Simulation
Time (hrs)

Raw I/O
Time (hrs)

In situ Data
Summarization (hrs)

Data Summaries I/O
Time (hrs)

13.5 1.76 2.09 0.0063

about 15.4% of the original simulation time but offers the flexibility of
scalable post-hoc analysis as compared to storing the raw data (the raw
data I/O time itself takes 13% of the simulation time).

Multivariate data summaries were later used to generate sample
scalar fields for the variables of interest, as well as perform multivari-
ate query-driven analysis. Figure 12(a,c,e) show the original scalar
fields for Entropy, Uvelocity and Temperature respectively, whereas
Figure 12(b,d,f) shows the corresponding sample scalar fields for the
respective variables generated by our copula-based sampling strategy.
Scientists were interested to see how the selected variables affect flow
instability in the turbine. Prior studies on univariate data [8, 14, 17]
highlights that Entropy values great than 0.8 and negative Uveloci-
ties correspond to potentially unstable flow structures. Therefore, we
computed the multivariate query, Entropy > 0.8 and Uvel < −0.05
from our stored data summaries. The corresponding probability field
is shown in Figure 12(g), whereas, Figure 12(h) shows the isosur-
faces of probability value 0.5 across the blade structures. Figure 12(i)
shows the distribution of Temperature values in this queried region
(i.e., P(Temp|Entropy > 0.8 AND Uvel < −0.05)). The peak in the
distribution suggests that Temperature values around 0.9 can be related
to potential flow instability. Figure 12(j) and (k) show how Temperature
is correlated with Entropy and Uvelocity respectively, in the selected
queried range. There is a strong positive correlation with Entropy and
a substantial amount of negative correlation with Uvelocity. Such ex-
ploratory analysis activity can help the scientists to gain more insights
into the multivariate relationships in their simulation. All post-hoc anal-
ysis were performed on a standard workstation PC (Intel i7 at 3.40GHz
and 16GB RAM) with 8 CPU cores. Using OpenMP parallelization, we
ran the analysis tasks on all the CPU cores. Table 3 shows the average
post-hoc analysis time and accuracy results for a single time step.

Domain Expert Feedback: We presented the results and explained
the idea behind of our proposed framework to the domain scientist.
The expert agrees with the fact that having a summarized version of
the original multivariate data is useful, as it facilitates effective post-
hoc multivariate analysis. Previous analysis works on this simulation
were primarily centered around studying the effect of the variables
independently [8,14,17], but our expert feels that this framework will be
useful to study how the interaction among different variables influence
flow instability in the engine. The result of our multivariate query aligns
with the expert’s knowledge that the potential unstable regions generate
near the edges of the blades, as shown in Figure 12(g,h). The expert
feels that the distribution of Temperature and correlation strengths in
this queried region is similar to what is originally expected. Generally,
because of the large storage requirements, the raw simulation data was
stored only after around 25-30 time steps. But, with our proposed data
summaries, we can now store at finer temporal resolutions (every 10th

time step in this case). Expert feels that this will help analyze the finer
temporal events in the simulation. Overall, the expert acknowledges
that our proposed framework is an effective strategy to understand the
multivariate relationships in his simulation without having to store the
large-scale simulation data off-line.

8 DISCUSSION

In this section, we would like to briefly discuss upon and highlight
some of the important aspects of our work.

Evaluation: The two major contributions of our work are (a) the
use of copula functions to model multivariate distributions and (b) the
use of spatial distributions in a scalable manner. In Section 6, we
evaluated the effects of both of these contributions by testing against
standard multivariate distribution models. There are a large number
of distribution-based data summarization approaches for univariate
data [14, 17, 56, 58]. However, to the best of our knowledge, not much
work has been done to address large-scale multivariate data. Therefore,

Table 3: Post-hoc analysis performance

MV Query
per time step(secs)

Sample Scalar Field
per time step (secs)

Normalized RMSE
Entropy U-Vel Temp

64.6 178.3 0.0211 0.0174 0.0184

to evaluate our proposed framework, we compared it with the standard
multivariate distribution models like multivariate histograms and multi-
variate GMMs. On one hand, as a result of the copula functions, we are
able to get both better data reduction rates as well as better estimation
times as compared to the standard models. On the other hand, as a
result of incorporating the spatial distributions, without extra overhead,
we are able to generate more accurate and statistically reliable results
during the post-hoc analysis phase. An important point to note here
is that, by including the spatial attributes in the standard multivariate
histograms and multivariate GMMs, we can expect to get similar post-
hoc analysis results as ours, but the rapid increase in storage size (for
multivariate histograms) and estimation times (for multivariate GMMs)
with addition of new dimensions make such an approach infeasible in
practical context of in situ applications.

Modeling Individual Variables: With respect to modeling the in-
dividual dimensions (variables), we can use any type/family of distribu-
tion as long as it has a well-defined continuous CDF. In our work, when
generating the multivariate samples, we generated sample values for all
the variables and created their individual sample scalar fields, but, if
needed, the scientists can also independently pick just the univariate dis-
tributions of one variables to study. As a result, it offers the flexibility
to perform other state-of-the-art distribution-based analysis [15, 45, 58]
for univariate data as well.

Modeling Dependency Structure: The dependency among the
variables are modeled using Gaussian copula, which essentially in-
volves computing the correlation matrix for the variables. Gaussian
copula functions model only the linear relationships among the vari-
ables, however, for this work, where we partition the simulation domain
into smaller block sizes this does not possess serious limitations. As
was shown in the example in Section 5.1, we were able to closely model
the overall non-linear relationship between the Pressure and Velocity
fields of the Isabel dataset. There are other standard copula functions
which can capture special types of multivariate relationships [53]. For
example, Clayton copula can capture a heavy left-tail dependency
among the variables, Gumbel copula captures right-tail dependencies,
Student-t copula can simultaneously capture both tail dependency struc-
tures. However, different copula functions have different parameter
requirements. In our framework, the Gaussian copula function can
be replaced with any other copula function depending on the kind of
relationship that exists between the variables. We plan to incorporate
such studies in our future endeavors. For this work, where storage foot-
print and estimation time are crucial requirements of the framework,
Gaussian copula is the most cost-efficient and effective alternative.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a flexible copula-based distribution-
driven analysis framework for large-scale multivariate data. The pro-
posed framework offers an effective solution to summarize multivariate
data in situ. In future, we plan to investigate other distribution-driven
problems in the field of scientific visualization that can benefit from the
flexibility of different kinds of available copula functions. Another im-
portant research problem is to facilitate multivariate distribution-based
feature tracking, where the users specify a feature distribution to look
for in the data. Modeling and analyzing multivariate ensemble data
and uncertain vector fields using copula-based strategies are also in our
plan of activities in future.
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